





Newton Programmer’s Guide:
2.1 OS Addendum

IMPORTANT

The information in this document is preliminary and is subject to
change.

4/22/97 Newton Technical Publications Team
© Apple Computer, Inc. 1997



Apple Computer, Inc.
© 1997 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the
normal use of the software or to
make a backup copy of the
software. The same proprietary
and copyright notices must be
affixed to any permitted copies as
were affixed to the original. This
exception does not allow copies to
be made for others, whether or not
sold, but all of the material
purchased (with all backup copies)
may be sold, given, or loaned to
another person. Under the law,
copying includes translating into
another language or format. You
may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.
Printed in the United States of
America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop

applications only for licensed
Newton platforms.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleTalk,
eMate, Espy, LaserWriter, the light
bulb logo, Macintosh, MessagePad,
Newton, Newton Connection Kit,
and New York are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.
Geneva, NewtonScript, Newton
Toolkit, and QuickDraw are
trademarks of Apple Computer, Inc.
Acrobat, Adobe Illustrator, and
PostScript are trademarks of Adobe
Systems Incorporated, which may
be registered in certain
jurisdictions.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.
Microsoft is a registered trademark
of Microsoft Corporation.
Windows is a trademark of
Microsoft Corporation.
QuickView™ is licensed from
Altura Software, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no

charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state. 5/97

iii

Preliminary Draft.



 Apple Computer, Inc. 4/21/97

Contents

Figures, Tables, and Listings xv

Preface

About This Book

xix

Change History xix
Related Books xix
Sample Code xx
Conventions Used in This Book xxi

Special Fonts xxi
Developer Products and Support xxii

Chapter 1

Newton Works

1-1

About Newton Works 1-2
User Interface 1-2
Programming Interface Overview 1-4

Using the Newton Works Interface 1-5
Registering Stationery 1-5
Creating the DataDef 1-6

Supporting Application-Defined Preferences 1-6
Adding Information to the Title Slip 1-7
Supporting Newton Find Operations 1-9

Creating the ViewDef 1-10
Supporting Document Find 1-11
Supporting Data Storage 1-13
Supporting Scrolling 1-14
Providing Status Bar Buttons 1-15
Providing Help 1-16
Notification of Changes 1-17

Working With the Tools Picker 1-18

iv

Preliminary Draft.



 Apple Computer, Inc. 4/21/97

Newton Works Interface Reference 1-19
Newton Works Base Application Slots and Methods 1-19
Newton Works DataDef Slots and Methods 1-23
Newton Works Viewdef Slots and Methods 1-25

Summary of Newton Works 1-34
Newton Works Base Application 1-34
Newton Works Stationery DataDef 1-34
Newton Works Stationery ViewDef 1-34

Chapter 2

Newton Works Draw Application

2-1

About the Draw Application 2-1
User Interface 2-2
Programmer’s Overview 2-3

Using the Drawing Application Interface 2-3
Adding Custom Drawing Tools 2-3
Adding Patterns and Gray Tones to the Fill Tool 2-6
Adding Stamps to the Stamp Tool 2-7
Draw Application Methods 2-8
The Canvas and Its Methods 2-9

Draw Application Reference 2-10
Proto 2-10

protoDrawTool 2-10
Data Structures 2-17

The Canvas 2-17
Functions and Methods 2-20

Draw Application viewDef Methods 2-20
Summary 2-24

Proto 2-24
Data Structures 2-25

v

Preliminary Draft.



 Apple Computer, Inc. 4/21/97

Chapter 3

Word Processing Views

3-1

About protoTXView And the View System 3-1
Application-defined Methods 3-2
View Slots 3-3
Other View Features 3-3
About Paged and Non-paged Word-Processing Views 3-4
About Scrolling with protoTXView 3-6
About Storing protoTXView Documents 3-6
Using protoTXViewFinder to Search Documents 3-7
Word-Processing View User Interface 3-7
Terminology 3-8

Using Word Processing Views 3-8
Initializing Your Word-Processing View 3-9

Setting Up Your Word-Processing View 3-10
Scrolling the Word-processing View 3-11
Reading a Word-Processing Document From a Soup 3-14
Storing Documents In a Soup 3-15
Handling User Interactions 3-17

Changing the Font 3-17
Changing the Font Size 3-18
Replacing the Selected Text With a Graphic 3-19
Converting the Selected Text to Uppercase 3-20
Adding a Recognized Word to Your Word-Processing

View 3-20
Word Processing View Reference 3-22

Common Parameter Descriptions 3-22
The Range Frame 3-22
The Graphics Specification Frame 3-22
The Ruler Information Frame 3-23
Tab Frames 3-23

Protos 3-24
protoTXView 3-24
protoTXViewFinder 3-45

Summary of Word Processing Views 3-47
Data Structures 3-47

vi

Preliminary Draft.



 Apple Computer, Inc. 4/21/97

protoTXView 3-47
protoTXViewFinder 3-50

Chapter 4

Keyboard Enhancements

4-1

About Keyboard Enhancements 4-1
Terminology 4-2
About Keystroke Handling 4-2

Keystroke Event Sequencing 4-3
Typing Without a Caret 4-4

About Command Key Handling 4-5
How Command Keys Are Found 4-5
About Displaying Command-Key Combinations in

Menus 4-6
About Keyboard Support in Pickers 4-8

Calling a Key-Command Method From a Picker Script 4-8
Keyboard Enhancements User Interface 4-9

General Usage 4-9
Text entry and editing 4-10
Slips, windows, and buttons: 4-10
Menus 4-12
System and Built-in App Command Key

Assignments 4-15
Compatibility 4-19

Default Buttons 4-19
Possible Key-view Compatibility Problem 4-20

Using the Keyboard Enhancements 4-20
Keystroke Handling 4-20

Intercepting Keystrokes Directly 4-21
Intercepting Individual Keystrokes 4-22
Intercepting Grouped Keystrokes 4-22
Text Flags and Keyboard Input 4-22

Handling Command Keys 4-24
Searching for Key Commands 4-24

vii

Preliminary Draft.



 Apple Computer, Inc. 4/21/97

Defining Key Commands 4-25
Displaying the Popup Command Key Help Slip 4-27
The Caret Stack and Caret Activation 4-27
Using Keys in Slips 4-28

Designating the Default Button In a Slip 4-29
Designating a Slip’s Close Box 4-29
Default and Close Buttons in Confirm Slips 4-30

Keyboard Reference 4-31
Data Structures 4-31

The Command-Key Mapping Frame 4-31
Methods and Functions for Handling Keystrokes 4-34
Methods and Functions for Handling Command Keys 4-36
Application-Defined Methods for Keystroke Events 4-40

Summary of Keyboard Enhancements 4-44
Data Structures 4-44
Methods and Functions 4-44

Chapter 5

Spell Checker

5-1

About the Spell Checker 5-1
Limitations 5-2

Using the Spell Checker 5-2
Processing of Words Passed to the Spell Checker 5-3
Use of Dictionaries by the Spell Checker 5-3

Spell Checker Reference 5-4
Functions 5-4

Summary of Spell Checker 5-10
Functions 5-10

Chapter 6

Drawing and Graphics 2.1

6-1

About Drawing and Graphics in the Newton 2.1 OS 6-2
About Gray Tones and Patterns 6-2

viii

Preliminary Draft.



 Apple Computer, Inc. 4/21/97

About Gray Pictures 6-2
About Gray Bitmaps (Pix Families) 6-3
About Gray Extras Drawer Icons 6-5
About Ink Shapes 6-5
About Text Box Shapes 6-6
About Gray Text 6-6
About Selection Handles 6-6
About Anti-Aliasing 6-7
Compatibility 6-8

Using Drawing and Graphics in the Newton 2.1 OS 6-9
Specifying Shades of Gray 6-9

Specifying RGB Triplets 6-10
Using Patterns, Gray Patterns, and Dithered Patterns 6-11
Black and White Patterns 6-11
Gray Patterns 6-12
Dithered Patterns 6-12

Creating Gray Text 6-13
Importing Color PICTs from the Mac OS Version of

NTK 6-14
Creating Graphic Shapes from Picture Objects 6-14
Using Pix Families 6-14

Creating Gray Extras Drawer Icons 6-15
Anti-Aliasing Monochrome Bitmaps 6-16
Gray Transfer Modes 6-17

How the System Scales Bitmaps 6-18
Using Selection Handles 6-19
Creating Ink and TextBox Shapes 6-19
New Graphic Shape Utility Functions 6-20

The FindShape Function 6-21
The GetPointsArrayXY Function 6-21
The MungeShape Function 6-22
The GetMaskedPixel Function 6-22

Changes to Existing Graphic Shape Functions 6-23
MakeBitmap Accepts a Depth Option 6-23
MakeShape Makes Bitmap Shapes With Masks 6-23

ix

Preliminary Draft.



 Apple Computer, Inc. 4/21/97

GetStrokePointsArray Filters More Points and Swaps
Coordinates 6-23

Drawing and Graphics Reference 6-23
Constants 6-23

Gray Tone Constants 6-24
Transfer Mode Constants 6-24

Data Structures 6-25
Style Frame 6-25
Patterns 6-28

Functions and Methods 6-29
Summary 6-43

Constant 6-43
Data Structures 6-44
Functions and Methods 6-44

Chapter 7

Sound

7-1

About Sound 7-1
Terminology 7-2
Compatibility 7-2
Hardware Volume Support 7-2
User Interface 7-3
Sound Input 7-4
Sound Compression 7-4
Synthesized Sound 7-5
Devices and Channels 7-6
Sampling Rates 7-7
New NTK Sound Import Function 7-7

Using Sound 7-7
Using the protoRecorderView 7-8
Using the Built-in Sound Recorder Slip 7-9
Using the NewtonScript API to Record Sound 7-12

Setting the Input Gain 7-14
Compressing Sound 7-15

x

Preliminary Draft.



 Apple Computer, Inc. 4/21/97

Using Codecs to Compress and Decompress Sound 7-15
Synthesizing Sound 7-17
Using Global Sound Preferences 7-23

Getting and Setting Input Gain Preference 7-23
Getting and Setting Default Input or Output Devices 7-24

PlaySound Errata 7-24
Using the Sound Registry 7-25

Sound Reference 7-26
Constants 7-26

Device Constants 7-26
Codec Constants 7-27
Compression Constants 7-27
Data Type Constants 7-28

Data Structures 7-28
Sound Frame 7-28
Sound Result Frame 7-31
User Configuration Variables 7-32
Synthesized Sound Data Format 7-32
soundRecorder Object 7-33

Protos 7-34
protoRecorderView 7-34
protoSoundChannel 7-36
protoSoundFrame 7-44

Functions 7-47
Sound Error Codes 7-52

Summary of Sound 7-53
Constants 7-53
Data Structures 7-53
Protos 7-55
Functions 7-56

Chapter 8

Dial-In Networks

8-1

Dial-in Networks Reference 8-2

xi

Preliminary Draft.



 Apple Computer, Inc. 4/21/97

Data Structures 8-2
Access Frame 8-2
Network Frame 8-2

Functions 8-3
Dial-in Networks Summary 8-7

Data Structures 8-7
Functions 8-7

Chapter 9

IrDA Communication Tool

9-1

About the IrDA Communication Tool 9-1
Overview 9-1
Terminology 9-2

Using the IrDA Tool 9-2
Making a Connection 9-3
Getting IrDA Tool Information 9-6
Slow IR Connect Option 9-8

IrDA Tool Option Reference 9-9
Discovery Option 9-10
Connection Information Option 9-13
Receive Buffers Option 9-16
Link Disconnect Option 9-17
Connect User Data Option 9-18
Attribute Name Option 9-19
IrDA Tool Error Codes 9-20

Summary of IrDA Tool 9-21
IrDA Tool Service Option Label 9-21
IrDA Tool Options 9-21
Constants 9-21

Chapter 10

eMate Multi-User Mode

10-1

Using Multi-user Mode 10-2

xii

Preliminary Draft.



 Apple Computer, Inc. 4/21/97

Reference 10-3
User Configuration Variables 10-3
Functions and Methods 10-4

Summary of Multi-User Mode 10-7
User Configuration Variables 10-7
Functions and Methods 10-7

Chapter 11

Miscellaneous

11-1

Reference 11-1
Data Structures 11-1

Views 11-1
Built-In Applications 11-4

Protos 11-8
protoPasswordSlip 11-8
protoBlindEntryLine 11-10

Constants 11-11
Views 11-11
Built-In Communication Tools 11-12

Functions and Methods 11-13
Views 11-14
Stationery 11-21
Text Input and Display 11-22
Recognition 11-24
System Services 11-25
Built-In Applications 11-27
Transports 11-33
Utility Functions 11-34

Summary 11-46
Data Structures 11-46
Protos 11-47
Constants 11-48
Functions and Methods 11-48

xiii

Preliminary Draft.



 Apple Computer, Inc. 4/21/97

Appendix A

Newton Toolkit Enhancements

A-1

Editors A-1
Picture Slot Editor A-1
Application Icon Editor A-3

Functions A-5

xiv

Preliminary Draft.



 Apple Computer, Inc. 4/21/97

xv

Preliminary Draft.



 Apple Computer, Inc. 4/21/97

Figures, Tables, and Listings

Chapter 1

Newton Works

1-1

Figure 1-1

Word processor display 1-3

Figure 1-2

Info picker 1-7

Figure 1-3

Title slip 1-8

Figure 1-4

Find slip 1-12

Figure 1-5

Status bar buttons 1-16

Figure 1-6

Tools picker 1-18

Table 1-1

FindChange parameters and actions 1-28

Chapter 2

Newton Works Draw Application

2-1

Figure 2-1

The Newton Works Draw application 2-2

Listing 2-1

Adding a tool to the Draw application’s tool bar 2-4

Listing 2-2

Adding to the Draw application’s fill tool 2-6

Listing 2-3

Adding stamps to the Draw application 2-7

Chapter 3

Word Processing Views

3-1

Figure 3-1

The displayed ruler 3-8

Figure 3-2

The TXWord button bar 3-17

Table 3-1

Use of application-defined methods in

protoTXView 3-2

Table 3-2

Use of standard view system slots in

protoTXView 3-3

Table 3-3

Paged versus non-paged views 3-5

Table 3-4

Scrolling methods of

protoTXView 3-6

Listing 3-1

Initializing a word-processing view 3-9

Listing 3-2

Setting up a word-processing view 3-10

xvi

Preliminary Draft.



 Apple Computer, Inc. 4/21/97

Listing 3-3

The SetScrollers method 3-11

Listing 3-4

The TXWord

ViewUpdateScrollersScript

method 3-11

Listing 3-5

The TXWord

GetTextHeight

 method 3-13

Listing 3-6

The TXWord

ViewScroll2DScript

 method 3-13

Listing 3-7

Reading a document from a soup 3-14

Listing 3-8

Closing the word-processing view 3-15

Listing 3-9

Storing a word-processing document 3-15

Listing 3-10

Changing the font in TXWord 3-17

Listing 3-11

Changing the font size in TXWord 3-18

Listing 3-12

Replacing the selcted text 3-19

Listing 3-13

Converting the selcted text to uppercase 3-20

Listing 3-14

Adding a recognized word to a word-processing
view 3-21

Chapter 4

Keyboard Enhancements

4-1

Figure 4-1

The find slip when it is not the key view 4-10

Figure 4-2

The Find slip when it is the key view 4-11

Figure 4-3

A menu with and without its keyboard equivalents
displayed 4-13

Figure 4-4

Command-key combination slip 4-14

Table 4-1

Command definition views 4-6

Table 4-2

System-level key assignments 4-15

Table 4-3

Notepad checklist and outline stationery command
keys 4-17

Table 4-4

Names application command keys 4-17

Table 4-5

Dates application command keys 4-18

Table 4-6

In/Out box command keys 4-18

Table 4-7

Call log command keys 4-19

Table 4-8 BookPlayer command keys 4-19
Table 4-9 Summary of keystroke-handling methods and

functions 4-20
Table 4-10 Text flags to specify the kind of keystrokes a view

accepts 4-23
Table 4-11 Summary of command key methods and

functions 4-24
Table 4-12 New default button lists 4-30

xvii
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Table 4-13 Key codes for special keys 4-33
Table 4-14 Key event-processing script flags 4-41

Listing 4-1 Calling a key-command method from a picker 4-9
Listing 4-2 A key command array 4-25
Listing 4-3 Defining key-commands in the ViewSetupFormScript

method 4-26
Listing 4-4 Removing key-commands 4-27
Listing 4-5 An example of a ViewCaretActivateScript

method 4-28

Chapter 6 Drawing and Graphics 2.1 6-1

Figure 6-1 The effect of a mask for a pix family 6-4
Figure 6-2 An oval shape with selection handles 6-6
Figure 6-3 Four black and white pixels 6-7
Figure 6-4 The anti-aliasing effect on a bitmap that has been

reduced by 50% 6-8
Figure 6-5 The 4-bit grayscale palette 6-9
Figure 6-6 Two bitmaps combined with the different transfer

modes 6-17
Figure 6-7 A textBox 6-20
Figure 6-8 Overlapping ovals 6-22

Table 6-1 Truth table for modeBic 6-25

Listing 6-1 Code to add an icon and iconPro slot to a part
frame 6-16

Listing 6-2 Function to retrieve ink shapes from a
clEditView 6-20

Chapter 7 Sound 7-1

Figure 7-1 Sound stationery 7-3
Figure 7-2 Sound recorder slip 7-4
Figure 7-3 protoRecorderView 7-8
Figure 7-4 Tone envelope 7-22

xviii
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Table 7-1 Sound recorder slots you can set 7-11
Table 7-2 Sound synthesis types 7-20
Table 7-3 Sound device constants 7-26
Table 7-4 Codec constants 7-27
Table 7-5 Compression constants 7-27
Table 7-6 Data type constants 7-28
Table 7-7 protoRecorderView state constants 7-36
Table 7-8 Sound interface error codes 7-52

Listing 7-1 Sound input 7-12

Chapter 9 IrDA Communication Tool 9-1

Table 9-1 Summary of IrDA tool options 9-9
Table 9-2 IrDA discovery option fields 9-11
Table 9-3 IrDA discovery option probe slots constants 9-12
Table 9-4 IrDA discovery option service hint constants 9-13
Table 9-5 IrDA connection information option fields 9-15
Table 9-6 Disconnect warning event values 9-18
Table 9-7 IrDA tool error codes 9-20

Chapter 11 Miscellaneous 11-1

Figure 11-1 A view created from protoPasswordSlip 11-8
Figure 11-2 A view based on protoBlindEntryLine 11-11
Figure 11-3 Screen orientation constants 11-12

Table 11-1 Clipboard data types accepted by the system 11-4

Appendix A Newton Toolkit Enhancements A-1

Figure A-1 NTK’s picture slot editor A-2
Figure A-2 NTK’s Application Icon pane of the Project Setting

dialog A-4

P R E F A C E

xix
Preliminary Draft.  Apple Computer, Inc. 4/21/97

About This Book

This book describes changes and additions to the Newton operating system
for version 2.1.

Important Note

The chapters in this book are at different stages of
completion. Some are less complete than others. For all
chapters, even the most complete ones, keep in mind that
the information is preliminary, subject to change, and may
not consistently reflect the latest technical information
available. ◆

Change History 0

Since the February 1997 release of this book, the following chapters are new
or have been substantially revised and/or reviewed:

Chapter 2, “Newton Works Draw Application,”
Chapter 5, “Spell Checker,”
Chapter 7, “Sound,”
Chapter 9, “IrDA Communication Tool,”
Chapter 10, “eMate Multi-User Mode,”
Chapter 11, “Miscellaneous,”
Appendix A, “Newton Toolkit Enhancements.”

Related Books 0

This book is one in a set of books available for Newton programmers. You’ll
also need to refer to these other books in the set:

P R E F A C E

xx

Preliminary Draft.  Apple Computer, Inc. 4/21/97

■ Newton Programmer’s Guide. This book is the definitive guide to Newton
programming, covering Newton OS 2.0. It contains a companion volume,
Newton Programmer’s Reference, on CD-ROM, in various electronic formats
for quick access.

■ Newton Toolkit User’s Guide. This book comes with the Newton Toolkit
development environment. It introduces the Newton development
environment and shows how to develop Newton applications using
Newton Toolkit. You should read this book first if you are a new Newton
application developer.

■ The NewtonScript Programming Language. This book comes with the
Newton Toolkit development environment. It describes the NewtonScript
programming language.

■ Newton Book Maker User’s Guide. This book comes with the Newton Toolkit
development environment. It describes how to use Newton Book Maker
and Newton Toolkit to make Newton digital books and to add online help
to Newton applications.

■ Newton 2.0 User Interface Guidelines. This book contains guidelines to help
you design Newton applications that optimize the interaction between
people and Newton devices.

Sample Code 0

The Newton Toolkit development environment, from Apple Computer,
includes many sample code projects. You can examine these samples, learn
from them, and experiment with them. These sample code projects illustrate
most of the topics covered in this book. They are an invaluable resource for
understanding the topics discussed in this book and for making your journey
into the world of Newton programming an easier one.

The Newton Developer Technical Support team continually revises the
existing samples and creates new sample code. The latest sample code is
included each quarter on the Newton Developer CD, which is distributed to
all Newton Developer Program members and to subscribers of the Newton
monthly mailing. Sample code is updated on the Newton Development side
on the World Wide Web (http://devworld.apple.com/dev/newtondev.shtml)

P R E F A C E

xxi
Preliminary Draft.  Apple Computer, Inc. 4/21/97

shortly after it is released on the Newton Developer CD. For information
about how to contact Apple Computer regarding the Newton Developer
Program, see the section “Developer Products and Support,” on page xxii.

The code samples in this book show methods of using various routines and
illustrate techniques for accomplishing particular tasks. All code samples
have been compiled and, in most cases, tested. However, Apple Computer
does not intend that you use these code samples in your application.

To make the code samples in this book more readable, only limited error
handling is shown. You need to develop your own techniques for detecting
and handling errors.

Conventions Used in This Book 0

This book uses the following conventions to present various kinds of
information.

Special Fonts 0
This book uses the following special fonts:

■ Boldface. Key terms and concepts appear in boldface on first use. These
terms are also defined in the Glossary.

■ Code typeface. Code listings, code snippets, and special identifiers in the
text such as predefined system frame names, slot names, function names,
method names, symbols, and constants are shown in the Code typeface to
distinguish them from regular body text. If you are programming, items
that appear in Code typeface should be typed exactly as shown.

■ Italic typeface. Italic typeface is used in code to indicate replaceable items,
such as the names of function parameters, which you must replace with
your own names. The names of other books are also shown in italic type,
and rarely, this style is used for emphasis.

P R E F A C E

xxii

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Developer Products and Support 0

The Apple Developer Catalog (ADC) is Apple Computer’s worldwide source
for hundreds of development tools, technical resources, training products,
and information for anyone interested in developing applications on Apple
computer platforms. Customers receive the Apple Developer Catalog featuring
all current versions of Apple development tools and the most popular
third-party development tools. ADC offers convenient payment and
shipping options, including site licensing.

To order product or to request a complimentary copy of the Apple Developer
Catalog contact

Apple Developer Catalog
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For Newton-specific information, see the Newton developer World Wide
Web page at:
http://devworld.apple.com/dev/newtondev.shtml

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

World Wide Web http://www.devcatalog.apple.com

1-1
Preliminary Draft.  Apple Computer, Inc. 4/21/97

C H A P T E R 1

Newton Works 1

Newton Works is a new application for the Newton 2.1 OS that itself is based
on the NewtApp framework. Newton Works is designed as a simple yet
powerful shell for productivity applications, much like similar desktop
“Works” products. “Applications” are installed into the Newton Works shell
as stationery.

Initially, four applications are available in Newton Works: a word processor
(based on the new proto protoTXView—see Chapter 3, “Word Processing
Views,” for details), a drawing application, a spreadsheet, and a graphing
calculator.

This chapter explains how to develop applications for Newton Works. It also
describes the additional slots and methods that Newton Works adds to the
standard NewtApp framework on which it is built.

To develop stationery for Newton Works you should have a basic
understanding of the NewtApp framework and stationery. For general
information on the NewtApp framework and standard NewtApp slots and
methods, refer to the chapter “NewtApp Applications” in Newton
Programmer’s Guide for Newton 2.0. For information on developing stationery,
refer to the chapter “Stationery” in the same book.

Figure 1-0
Listing 1-0
Table 1-0

C H A P T E R 1

Newton Works

1-2 About Newton Works

Preliminary Draft.  Apple Computer, Inc. 4/21/97

About Newton Works 1

Newton Works was originally developed with the needs of a student in
mind. It is an easy-to-use environment where a student can perform different
tasks working on different documents. Individual projects are clearly
separated as stand-alone documents of different types. However, Newton
Works is not limited to use in the education setting. It is suitable as a
general-purpose shell for any productivity applications, and is supported on
all Newton 2.1 OS devices.

User Interface 1
Newton Works looks like a typical NewtApp-based application. It has a large
document work area under a title bar and a status bar at the bottom, with a
New button, in addition to other application-specific buttons. The New
button gives the user access to the different applications installed in the
Newton Works shell. When tapped, the New button displays a picker listing
the different types of documents that the user can create, corresponding to
the stationery applications installed in Newton Works. Tapping on a
document type switches to that application and creates a new document of
that type. Figure 1-1 shows an example of the word processor application.

C H A P T E R 1

Newton Works

About Newton Works 1-3
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Figure 1-1 Word processor display

When used on the eMate 300 device, the Newton Works user interface can
look slightly different when the unit is in Classroom Mode. This is a
simplified operating mode designed for student use. In this mode, the filing
folder interface is hidden, to prevent work from appearing lost. The user sees
all their documents together in the Newton Works overview. If the device is
being shared among multiple students, each student logs into the unit under
their name and sees only their documents in Newton Works. Filing isn’t
necessary in this mode, since most documents will be uploaded to a
classroom server when finished, and only a few working documents will
reside on the unit at a particular time.

C H A P T E R 1

Newton Works

1-4 About Newton Works

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Note that this simplification of the Newton Works user interface in
Classroom mode follows the standard recommendations for applications
that support classroom mode on the eMate 300 device. This behavior is not
special to Newton Works.

Like most Newton applications, work is saved as it is entered, so there is no
“Save” function necessary for Newton Works users. All saved documents are
accessed through the standard Newton Overview button (either on the
floating button bar or on a real keyboard). Tapping the Overview button
displays a list of existing Newton Works documents, from which the user can
select one to work on.

Newton Works extends the NewtApp user interface in one notable way: with
the addition of scroll bars to documents. Because documents are typically
larger than the screen, scroll bars allow users to navigate their work. The
support for scroll bars is provided by the Newton Works shell. For details on
how scrolling is supported, see the section “Supporting Scrolling”
(page 1-14).

Programming Interface Overview 1
You can extend Newton Works in two ways: you can add tools to existing
stationery, and you can add new stationery. You add new stationery by
registering a new dataDef and viewDef with the system.

Remember that in the NewtApp framework, a single dataDef can have
multiple associated viewDefs. However, in Newton Works, each dataDef
(representing one type of stationery) can have only a single viewDef, named
'default. Other viewDefs are allowed for routing formats, but not for use in
displaying Newton Works data on the screen.

As usual for a NewtApp, the user accesses the different stationery types
through the New button on the status bar. Each dataDef registered for
Newton Works corresponds to one item in the New picker. The
corresponding 'default viewDef controls the status bar, scroll bars, and the
document viewable area.

A good candidate application to add to Newton Works would include an
editor that allows the user to view and modify some kind of document. Also,
you’d want your application to fit with a general suite of productivity
applications, such as those supplied with Newton Works. If your application

C H A P T E R 1

Newton Works

Using the Newton Works Interface 1-5
Preliminary Draft.  Apple Computer, Inc. 4/21/97

is very specialized, perhaps it would be better to make it a stand-alone
application.

You can also add tools to an existing application that supports this. For
example, you might add a thesaurus to the word processor. The user accesses
tools from the Tools button in the status bar. You register a new tool for an
application by sending the RegNewtWorksTool message to the Newton Works
base application.

Using the Newton Works Interface 1

This section describes how to perform these tasks:

■ register new Newton Works stationery

■ support application-defined preferences for your dataDef

■ add custom information to the title slip for your dataDef

■ support Newton Find operations in your dataDef and viewDef

■ support document Find operations in your viewDef

■ support storage of permanent data in your viewDef

■ support scrolling in your viewDef

■ provide custom buttons on the status bar in your viewDef

■ provide help information for the user in your viewDef

■ handle notification of global preferences changes in your viewDef

■ register, unregister, and work with tools for an installed Newton Works
stationery application

Registering Stationery 1
You register and unregister your stationery with the system by using the
standard functions RegDataDef, UnRegDataDef, RegisterViewDef and
UnRegisterViewDef. Typically, you would register your stationery in a

C H A P T E R 1

Newton Works

1-6 Using the Newton Works Interface

Preliminary Draft.  Apple Computer, Inc. 4/21/97

package part InstallScript function, and unregister it in the part
RemoveScript function.

Creating the DataDef 1
You must use the standard stationery proto, newtStationery, to create a
dataDef for Newton Works. The superSymbol slot of the dataDef must be set
to the symbol 'newtWorks. This associates the stationery with the Newton
Works application.

Note that as in the NewtApp framework, the symbol of the dataDef is used
as the class slot of soup entries created by that dataDef.

Certain slots are required for all dataDefs, such as symbol, name, description,
superSymbol, icon, StringExtract, TextScript, FillNewEntry, etc. For details
on these standard NewtApp slots and methods, refer to the “NewtApp
Reference” chapter of Newton Programmer’s Reference. The only dataDef slot
unique to Newton Works is the prefs slot. See the next section for details on
how it is used.

Supporting Application-Defined Preferences 1

The dataDef can specify an application-specific preferences command that
appears in the Info button picker when the user is viewing an entry of the
dataDef. If this command is chosen, a preferences slip is displayed. To
implement this feature, define a slot called prefs in the dataDef. This slot
contains a frame defining the command name and icon to show in the Info
picker and the frame contains a view template defining the actual
preferences slip. Figure 1-2 shows an example of the Info picker with one
application-specific preferences command added for the word processor
stationery type (paper).

Note that there are also global preferences that apply to all Newton Works
applications. These are accessed through the Works Prefs choice on the Info
picker. For more information about handling global preferences, see the
section “Notification of Changes” (page 1-17).

C H A P T E R 1

Newton Works

Using the Newton Works Interface 1-7
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Figure 1-2 Info picker

When the user chooses the application-specific preferences command from
the Info button, Newton Works sets the slots target (the soup entry being
viewed), newtAppBase (the Newton Works base view), and viewDefView (the
current viewDef) appropriately in the preferences view template. Then it
calls BuildContext(prefsTemplate) to create and display the preferences view.

The preferences view must read the appropriate preferences slots in its
ViewSetupFormScript method (or other initialization method), and write the
slots in its ViewQuitScript method (or before it closes). The preferences reside
in the application preferences frame, which you can get using the
newtApplication method GetAppPreferences. The preferences for the dataDef
must reside in a subframe for that dataDef within the preferences frame. For
example,

prefsFrame := newtAppBase:GetAppPreferences().(kDataSymbol);

should return the preferences for the dataDef identified by kDataSymbol.

To save the preferences, call EntryChangeXmit(prefsFrame, kDataSymbol).

Note that the preferences view must be closed by calling
newtAppBase:RememberedClose(base), otherwise, Newton Works keeps a
reference to the view and it uses up RAM. For example, here’s how you
would write the ButtonClickScript method for the close box of the
preferences view:

ButtonClickScript: func() begin
newtAppBase:RememberedClose(base);

end

Adding Information to the Title Slip 1

The dataDef can specify extra information that appears in the title slip for
documents. To do so, you must implement the InfoBoxExtract method in the

C H A P T E R 1

Newton Works

1-8 Using the Newton Works Interface

Preliminary Draft.  Apple Computer, Inc. 4/21/97

dataDef. This method is called conditionally by Newton Works whenever the
title slip is opened.

You must return a shape from the InfoBoxExtract method. This shape is
shown at the bottom of title slip, after the standard contents. You could
return a text summary made into a shape, or a small sketch of a drawing, or
anything else useful to show in the title slip. Figure 1-3 shows an example of
the title slip for the Newton Works word processor. It has one extra line,
showing the number of pages, added to the default slip. Here’s an example
of code that could be used to add that line:

InfoBoxExtract: func(target, maxSize, viewDefView) begin
local numPages := if viewDefView then viewDefView:?GetCountPages();
if numPages then
 [MakeText(ParamStr("Number of Pages: ^0, [numPages]),

maxSize.left, maxSize.top, maxSize.right, maxSize.top+15)];
end

If you don’t want to add any extra information, don’t implement the
InfoBoxExtract method, or return nil from it.

Figure 1-3 Title slip

C H A P T E R 1

Newton Works

Using the Newton Works Interface 1-9
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Supporting Newton Find Operations 1

A Newton Find operation is a search initiated by the user tapping the main
Find icon. Such a search can include all, some, or just one Newton
application. In this kind of Find operation, Newton Works is considered a
single application, including all of the individual stationery installed in it.
Contrast this with a Newton Works document Find operation, which is
initiated by the user tapping the Find choice in the Tools picker inside a
particular document. This kind of Find operation applies only to the single
Newton Works document that is open, and is described in the section
“Supporting Document Find” (page 1-11).

To support a Newton Find operation that includes Newton Works, Newton
Works first uses the FindStringInFrame function to search for a specified
string in all soups. If this function does not find a match in a particular soup
entry, Newton Works sends your dataDef the FindFn message to allow you to
do your own search of that soup entry. Note that FindFn is called only if
Newton Works doesn’t find a match by using FindStringInFrame.

The FindFn method gives you the opportunity to find data that may be stored
in non-standard ways, that only your stationery knows how to decode. For
example, if you compress entries, you might need to decompress them in
order to do a search.

After the Find operation finishes, the system creates a Find overview that
displays the found items. It uses the FindSoupExcerpt function to get a string
for each item in the overview. The system sends the FindSoupExcerpt
message to the dataDef for each item found in the Newton Works soups. You
must supply this method in your dataDef if you want to specially construct
the text that is shown for an item in the overview.

If the soup entries contain text information and you don’t want to do
anything special to construct the overview text, you don’t need to implement
the FindSoupExcerpt method. In this case, the system calls the root view
method FindSoupExcerpt to obtain the overview text. This method calls the
StringExtract method of the dataDef to obtain the overview text, or uses
other means, if that method returns nothing.

In situations where the FindStringInFrame function is able to find a match,
the root view method FindSoupExcerpt will also be able to display some text
for the Find overview. If your Newton Works soup entries store string data

C H A P T E R 1

Newton Works

1-10 Using the Newton Works Interface

Preliminary Draft.  Apple Computer, Inc. 4/21/97

with which these functions work, then you don’t need to do anything else to
support Newton Find operations.

In situations where the FindStringInFrame function does not work to search a
soup entry, you’ll need to implement both FindFn and FindSoupExcerpt
methods in your dataDef if you want your data to be searchable in global
Find operations.

Finally, if your soup is such that sometimes the FindStringInFrame function
will find a match and sometimes the FindFn is needed, then you must
implement a FindSoupExcerpt method that can handle both cases. In the case
of special data found by your own FindFn method, you will need to return a
string for the overview from FindSoupExcerpt. In the case of simple string
data found by FindStringInFrame, your FindSoupExcerpt method can call the
root method FindSoupExcerpt to get the overview string, like this:

GetRoot():FindSoupExcerpt(entry, resultFrame)

When the user taps an item in the Find overview, or if only a single item is
found, the system sends the ShowFoundItem message to the application that
owns that item. For a Newton Works soup item, this message is sent to your
stationery viewDef. You must open the appropriate document, highlight the
target text, and, if necessary, scroll it to display the text. Note that even
though this message is sent to the viewDef, it is documented in this section
for completeness.

Note that the FindSoupExcerpt and ShowFoundItem methods are documented
in the Newton Programmer’s Reference, since they are standard Newton 2.0
methods. Their use is also covered extensively in the chapter on Find in the
Newton Programmer’s Guide.

Creating the ViewDef 1
Certain slots are required for all viewDefs, such as symbol, type, protection,
etc. These slots are not documented in this chapter unless their values are
Newton Works-specific. For details on the standard viewDef slots and
methods, refer to the “Stationery Reference” chapter of Newton Programmer’s
Reference. For information regarding viewDefs for printing (print formats)
refer to the “Routing Interface Reference” chapter of Newton Programmer’s
Reference. Newton Works does not expect any slots other than the standard
ones required for all print formats.

C H A P T E R 1

Newton Works

Using the Newton Works Interface 1-11
Preliminary Draft.  Apple Computer, Inc. 4/21/97

For the main viewDef, the methods and slots that Newton Works uses are
explained in the following subsections according to their function.

Supporting Document Find 1

A Newton Works document Find operation is a search initiated by the user
invoking the Find or Find Again commands in an open Newton Works
document. Such a search operates only on the open document. Contrast this
with a Newton Find operation, which applies to all or selected installed
applications. Supporting the latter kind of Find operation is described in the
section “Supporting Newton Find Operations” (page 1-9).

To support a document Find operation, your viewDef is responsible for
putting the Find and Find Again commands into the appropriate button in
the application status bar. To do this, add the items {keyMessage:
'NewtworksFind} and {keyMessage: 'NewtworksFindAgain} to the appropriate
picker array. Typically, these commands are found in the picker displayed by
the Tools button. The methods NewtworksFind and NewtworksFindAgain are
defined in Newton Works, so the behavior will be correct as long as these
methods are called. For example, the behavior for the Find command is to
display the Find slip, shown in Figure 1-4.

For more information about adding items with command-key shortcuts to
pickers, see the section “About Displaying Command-Key Combinations in
Menus” (page 4-6). This section explains the usage of the keyMessage slot
shown above.

C H A P T E R 1

Newton Works

1-12 Using the Newton Works Interface

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Figure 1-4 Find slip

Next, your viewDef must implement the FindChange method. This method is
called when the user taps one of the action buttons (“Change All”, “Change,”
“Change,Find,” or “Find”) in the Find slip. This method is passed two
parameters: the first identifies the action requested by the user, and the
second contains the string to find, and the string to replace it with, if
appropriate (for a Change action). Your FindChange method must do the
requested find or replace operation and update the view appropriately.

The recommended user interface guidelines for doing find or replace
operations are as follows:

■ Start the find or replace operation from the current highlight range, or
from the insertion point if there is no highlight range.

■ Wrap the search around to the beginning of the document if the end is
reached, making a page flipping sound when the end of the document is
passed.

■ Stop when the entire document has been searched.

■ For a find operation, if an item is found, display the portion of the
document containing the item and highlight the item.

If you don’t implement the FindChange method, do not add the Find and Find
Again commands to a picker, since Find can’t operate in your viewDef.

C H A P T E R 1

Newton Works

Using the Newton Works Interface 1-13
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Supporting Data Storage 1

Newton Works automatically handles saving the current entry periodically
(every 30 seconds or after 2 seconds of no system activity). Before saving the
entry, Newton Works sends your viewDef the SaveData message. The
SaveData method is passed the current entry. In this method, you can update
any slots or data structures in the entry or do any other processing necessary.

You must return a value indicating if the entry should actually be saved.
Return nil if it does not need to be saved or true to save the entry.
Alternatively, you can return the symbol 'NoRealChange. This causes the entry
to be saved, but the modification time stamp is not updated. You might want
to do this if the change was insignificant, such as a change in the highlight
location but not a change in the data itself.

Note

Even if you return nil from SaveData, the entry still might be
saved, if Newton Works detects that it has been modified,
for example by one of the NewtApp framework protos.

Note that your SaveData method does not actually do the saving operation.
That is performed by Newton Works after SaveData returns. Also, your
SaveData method does not need to check all the viewDef fields to see if they
have changed, if your fields are based on the NewtApp slot-view protos.
That is because these slot-view protos handle saving their own data when it
is changed.

In addition to the automatic periodic saving that Newton Works performs,
you can manually invoke a save operation on the current entry by calling the
newtEntryView method StartFlush. Just send this message to self, like this:

:StartFlush();

The StartFlush method starts the flush timer that calls the method EndFlush
after 5 seconds. EndFlush sends your viewDef the SaveData message, as
described previously, and saves the entry, if appropriate. This is the standard
way of saving stationery data outside the automatic saving mechanism
described previously.

It is possible for your SaveData method to be passed an entry that is invalid
or read-only. In the SaveData method, before you do begin any operations
that write to the soup entry, you should perform this check:

C H A P T E R 1

Newton Works

1-14 Using the Newton Works Interface

Preliminary Draft.  Apple Computer, Inc. 4/21/97

If EntryValid(entry) and not EntryStore(entry):IsReadOnly()
then // do the operation

Supporting Scrolling 1

If the documents created by your stationery can be larger than what can be
displayed on the screen at one time, then you’ll want to provide a
mechanism for the user to scroll the view. Newton Works can display scroll
bars for you and can facilitate scrolling with some support from you in your
viewDef.

First, you must supply the method GetScrollableRect in your viewDef. This
method must return a bounds frame that describes the rectangle enclosing
the scrollable part of the view (usually the currently visible part of the data,
not including rulers or other tools). Newton Works automatically displays
scroll bars at the right side and bottom of the view, as needed. The scroll bars
are displayed in the stationery’s topmost view, not inside the scrollable view.

If you return nil from GetScrollableRect, Newton Works does not display
any scroll bars and scrolling functionality is not supplied by Newton Works.
You can return nil if you want to provide your own scrolling functionality or
if you don’t need scrolling.

You also must supply a group of methods in the viewDef that return status
information. GetScrollValues must return a frame with x and y slots
containing the current scroll thumb positions as integers. GetTotalHeight and
GetTotalWidth must each return integers, corresponding respectively to the
total height and width of the object to be scrolled (not just the visible area).
The values returned by GetScrollValues are relative to the values returned
by GetTotalHeight and GetTotalWidth. So if the total height and width of the
object were each 1000, and each scroll thumb was positioned in the middle of
its scroll bar, then GetScrollValues should return {x: 500, y: 500}. If the
thumbs were positioned at the maximum positions, then GetScrollValues
should return {x: (1000 - width), y: (1000 - height)}.

Next, you may want to supply methods that update your view in response to
a scroll request. Two methods, ViewScrollDownScript and ViewScrollUpScript
must update the view in response to a Down or Up arrow key, respectively. If
you don’t define these methods, then Newton Works performs the default
action of scrolling down or up one screenful.

C H A P T E R 1

Newton Works

Using the Newton Works Interface 1-15
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Finally, the Scroll method is the key method in which you must do the
appropriate work to scroll the document. Your Scroll method is called by
Newton Works as a result of the user manipulating the scroll bar controls.
The Scroll method is passed a frame with x and y slots, describing how far
to scroll in each direction.

Note that you must call the Newton Works method UpdateAllScrollers from
your Scroll method. UpdateAllScrollers updates the scroll bar controls to
reflect the new scrolled position of the view. You should call this method
when you open the view and anytime you make a change that affects the size
of the view (for example, changing margins or displaying rulers or other
control elements), the size of the document (for example, adding or
removing information), or the scrolled position of the document. You pass it
the view and four Boolean values that indicate: if the total height changed, if
the vertical scroller thumb needs to be updated, if the total width changed,
and if the horizontal scroller thumb needs to be updated. UpdateAllScrollers
calls your methods GetScrollValues, GetTotalHeight, and GetTotalWidth as
needed to recalculate the internal scroller data structures.

Providing Status Bar Buttons 1

To provide any custom buttons in the status bar, you can specify button view
templates in one of two slots in your viewDef: statusLeftButtons and
statusRightButtons. Specify an array of one or more button templates in the
statusLeftButtons slot to include them at the left side of the status bar, but to
the right of the New button, as shown in Figure 1-5. They are laid out from
left to right, beginning with the first button in the array.

Specify an array of one or more button frames in the statusRightButtons slot
to include them at the right side of the status bar, but to the left of the
Routing and Filing buttons. They are laid out from right to left, beginning
with the first button in the array.

C H A P T E R 1

Newton Works

1-16 Using the Newton Works Interface

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Figure 1-5 Status bar buttons

If you are registering tools for your Newton Works stationery or
documenting your tool format for other developers to use, you should
include a Tools button on the status bar that displays a picker listing the
installed tools. You can use the Newton Works method GetNewtWorksTools to
return an array of tools registered for your stationery.

There is a notification method that you can supply in your viewDef that is
called if some other package installs or removes an auxiliary button in the
Newton Works status bar. This method is UpdateStatusBar. If you have
dynamic buttons in the status bar, you should provide this method to update
the status bar button arrays. Note that you don’t need to do anything to add
auxiliary buttons; Newton Works does all the work. The UpdateStatusBar
message simply allows you to update your own buttons.

This viewDef method is also called anytime the status bar is redrawn by the
newtApp base method UpdateStatusBar. For example, this can happen when
the screen is rotated, and you might want to show a different number of
buttons depending on how much screen width is available.

The newtApp base UpdateStatusBar method causes the status bar view to
regenerate its child views, calling its ViewSetupChildrenScript method,
which in turn calls your viewDef UpdateStatusBar method. Whatever you set
up in the two button arrays in your method is added to the existing status
bar buttons when the status bar is redrawn.

Providing Help 1

The user accesses Help by tapping the Help command in the Information
picker (“i” button on the status bar). When this command is chosen, you can
either do a custom operation for your stationery, or open a help book, or
both. When this command is chosen, Newton Works first conditionally sends

C H A P T E R 1

Newton Works

Using the Newton Works Interface 1-17
Preliminary Draft.  Apple Computer, Inc. 4/21/97

your viewDef the DoHelp message. You can do any kind of special processing
in this method. If you also want to open a help book, you must return the
symbol 'loadHelp from the DoHelp method.

If DoHelp is not implemented, or if it returns 'loadHelp, then Newton Works
opens a help book. Two slots in the viewDef are used to identify the help
book and location to which it is opened: helpManual and viewHelpTopic. The
helpManual slot must contain a help book frame (the book frame produced by
Newton Book Maker). The viewHelpTopic slot sets the topic to which that
help book should open. This must be a string that matches one of the
.subject lines in the help book. Refer to Newton Book Maker User’s Guide and
the sample code available on help books for more details about help book
frames and topics.

Notification of Changes 1

There are global preferences that apply to all Newton Works applications.
These are accessed by the user through the Works Prefs choice on the Info
picker. Currently, the global preferences contain two items: a choice of using
metric measurement units (rather than English) and a setting to always store
new documents internally (rather than on a storage card).

If the global preferences for Newton Works are changed, Newton Works
sends the current viewDef the PrefsChanged message, passing the global
preferences frame. This allows you to respond appropriately, if necessary, to
the user’s wishes.

If the view bounds of your view change, Newton Works sends the viewDef
the ViewChangedScript message. This could happen if the horizontal scroller
is no longer needed, or if the icon bar is moved from the side to the bottom
on a MessagePad 2000 unit, and so forth. This viewDef method is a standard
view method that is also called anytime a view is changed as a result of a
SetValue call.

The ViewChangedScript method is passed two parameters, the slot that
changed and the view that changed. For more information, see the Newton
Programmer’s Reference.

C H A P T E R 1

Newton Works

1-18 Using the Newton Works Interface

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Working With the Tools Picker 1
You can add tools to the Tools picker of any Newton Works stationery that
supports additional tools. For example, you might add a thesaurus to the
word processor. The user accesses such tools from the Tools button in the
status bar. When the user taps the Tools button, a picker of available tools is
displayed, as shown in Figure 1-6. The application viewDef is responsible for
displaying the tools installed for that viewDef, and for calling the tool
correctly when it's chosen from the Tools picker.

Figure 1-6 Tools picker

Note that the Tools button already exists in the built-in Newton Works
stationery, but if you are creating your own stationery, you must add the
Tools button to the status bar yourself. For details on how to do this, see the
section “Providing Status Bar Buttons” (page 1-15). If you are adding a tool
to a different type of stationery that supports tools, you may need to add the
Tools button if there are no other tools registered. Don’t assume that the
button already exists.

You register a tool for an application by calling the RegNewtWorksTool method.
To remove a tool you’ve added, call UnregNewtWorksTool. You can call
GetNewtWorksTools to return an array of registered tools for a particular
application, or you can call GetNewtWorksTool to return a particular tool.

Within the viewDef or status bar context, you can use the syntax
newtAppBase:MethodName to call these methods. For example:
newtAppBase:GetNewtWorksTools(sym). Outside the viewDef, you’ll need to
call these methods like this:

GetRoot().newtWorks:RegNewtWorksTool(toolSym, toolFrame);

C H A P T E R 1

Newton Works

Newton Works Interface Reference 1-19
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Whenever a tool is installed or removed for the current document, the
system sends the message ToolsChanged to the viewDef. If you choose to
implement it, this method allows you to update the tools picker, if necessary,
or do other work. Note that an even better way of making sure the tools
picker is current is to generate it dynamically when the user taps the Tools
button.

Newton Works Interface Reference 1

This section describes the slots and methods in the Newton Works base
application and in dataDefs and viewDefs that you intend to register for use
in Newton Works.

Newton Works Base Application Slots and Methods 1
The following slots and methods reside in the Newton Works base
application.

Slot descriptions

newtAppBase Contains the Newton Works base view.
viewDefView Contains the current viewDef view. Can be nil if no

viewDef is currently active, as in the case when the
current layout is the overview.

The following methods are also provided.

GetNewtWorksTool 1

newtAppBase:GetNewtWorksTool(toolSym)

Returns a tool frame.

toolSym The tool symbol to find among the registered tools.

return value Returns the frame corresponding to the tool identified
by toolSym. If no tool with that symbol is found, nil is
returned.

C H A P T E R 1

Newton Works

1-20 Newton Works Interface Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

GetNewtWorksTools 1

newtAppBase:GetNewtWorksTools(dataTypeSym)

Returns an array of tools registered under a particular symbol.

dataTypeSym The dataTypeSymbol to look for among the registered
tools. This is used to match the dataTypeSymbol slot in
the toolFrame specified when the tool was registered. To
get all the tools registered for all data types, pass nil for
this parameter.

return value Returns an array containing the tools identified by
dataTypeSym. The array contains the frames passed in
the toolFrame parameter to the RegNewtWorksTool
method. If no tools were found, an empty array is
returned.

DISCUSSION

Use this method to return all tools registered for a particular Newton Works
stationery application. For example, GetNewtWorksTools('paper) returns an
array of all the tools registered for the Word Processor, since 'paper is it’s
dataDef symbol.

RegNewtWorksTool 1

newtAppBase:RegNewtWorksTool(toolSym, toolFrame)

Registers a tool for the viewDef identified by the dataTypeSymbol slot in the
toolFrame frame.

toolSym A unique symbol under which to register the tool.

toolFrame A frame describing the command to appear in the Tools
picker. Each command is a frame similar to the frames
passed to PopupMenu, as documented in the section
“Specifying the List of Items for a Popup” (page 6-37) in
Newton Programmer’s Guide. The standard slots (such as
item, icon, and all other slots supported by PopupMenu)
define the appearance of the command in the viewDef's

C H A P T E R 1

Newton Works

Newton Works Interface Reference 1-21
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Tools button, but each viewDef defines the additional
slots it expects to see in this frame.

Every toolFrame must also contain the slot
dataTypeSymbol that contains a symbol identifying the
dataDef for which it's registered. For example, tools for
the word processor have the symbol 'paper.

return value Returns non-nil if the tool was successfully registered,
or nil if it was not.

DISCUSSION

For 'drawPaper (Draw) or 'paper (Word Processor) stationery, provide the
following additional slots and methods in toolFrame:
CmdFunc(viewDefView, newtAppBase)

A method called when the command is chosen from the
Tools button. viewDefView is the main viewDef.
newtAppBase is the Newton Works application. The
return value of this method is not used.

keyCommand Optional, used by Word Processor stationery only. A
frame with command key information, containing the
same slots as the frames used to register command keys,
as described in “The Command-Key Mapping Frame”
(page 4-31). To register a command key that activates an
item on the Tools picker, the keyCommand frame must
contain the method KeyFn(keyView). This method is
called when the command key for this item is pressed. It
is passed the key view, which will be the viewDefView or
a child of it. This function should perform the action as
if the command were chosen from the Tools picker. The
return value of this function is not used.

C H A P T E R 1

Newton Works

1-22 Newton Works Interface Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Note

The keyCommand frame has a keyMessage slot that contains
a symbol identifying a function. You should specify a
symbol that contains your developer signature
appended to it in order to uniquely identify it. This is
because the Word Processor creates a slot of this name
in its base view, and you don’t want to conflict with any
other tools that might specify a function with the same
name. ◆

If you are registering a tool for the Word Processor and including the
keyCommand frame in the toolFrame, and thus are specifying a KeyFn method,
you don’t need to supply a CmdFunc method. This is because if a CmdFunc
method does not exist, then Newton Works calls the KeyFn method in the
keyCommand frame when a tool is chosen.

Normally you would want the KeyFn method in the keyCommand frame to do
the same thing as the CmdFunc method in toolFrame anyway. The KeyFn
method is called if the user presses the command-key combination for the
tool and the CmdFunc method is ordinarily called if the tool is chosen from the
Tools picker directly.

A tool can be registered for only one dataDef with each call to
RegNewtWorksTool; to register a tool for more than one datadef, call
RegNewtWorksTool again with the new dataTypeSymbol and a different toolSym.

UnregNewtWorksTool 1

newtAppBase:UnregNewtWorksTool(toolSym)

Unregisters a tool registered by RegNewtWorksTool.

toolSym The symbol under which the tool was originally
registered.

return value Undefined; do not rely on it.

DISCUSSION

Note that if you pass a symbol for a tool that is not registered, nothing
happens and no error occurs.

C H A P T E R 1

Newton Works

Newton Works Interface Reference 1-23
Preliminary Draft.  Apple Computer, Inc. 4/21/97

UpdateStatusBar 1

newtAppBase:UpdateStatusBar()

Recreates and redraws the status bar.

return value Undefined; do not rely on it.

DISCUSSION

This method can be called to recreate the status bar, for example, if you have
changed the button arrays. This method calls the ViewSetupChildrenScript
method of the status bar, which in turn calls the UpdateStatusBar method of
the view identified in the viewDefView slot, if there is a currently active
viewDef.

Newton Works DataDef Slots and Methods 1
The slots in the dataDef that are used by Newton Works are as follows.

Slot descriptions

superSymbol Required. Must be the symbol 'newtWorks.
prefs Optional. Defines an application-specific preferences

command that appears in the Info button picker when
the user is viewing an entry of this dataDef. This slot
holds a frame similar to the frames passed to PopupMenu,
as documented in the section “Specifying the List of
Items for a Popup” (page 6-37) in Newton Programmer’s
Guide. The standard slots in prefs (such as item, icon,
etc.) define the appearance of the command in the Info
picker. The frame must also contain a view template in
the prefsTemplate slot.
prefsTemplate

A view template for a slip that contains
the user interface elements needed for the
user to set the dataDef-specific
preferences.

The following methods are also optional in the dataDef.

C H A P T E R 1

Newton Works

1-24 Newton Works Interface Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

FindFn 1

dataDef:FindFn(entry, what, offset)

Called by Newton Works when a global (Newton-wide) Find is performed,
and a search using the function FindStringInFrame finds nothing in a Newton
Works soup entry.

entry The soup entry to search.

what The string to search for.

offset An integer specifying an offset, in characters. Begin
searching in entry starting at this offset.

return value Return non-nil from this method if the string what is
found in the entry anywhere after offset. Return nil if
the string is not found.

DISCUSSION

This method should search the soup entry for the what string.

Note that if the string is in the soup entry in plain NewtonScript string form
(if FindStringInFrame returns true) FindFn will not be called because Newton
Works has already identified the entry as matching the Find criteria. The
FindFn method is called only when FindStringInFrame finds nothing, to let
you do any custom processing that might be needed in order to do a string
search.

C H A P T E R 1

Newton Works

Newton Works Interface Reference 1-25
Preliminary Draft.  Apple Computer, Inc. 4/21/97

InfoBoxExtract 1

dataDef:InfoBoxExtract(target, maxSize, viewDefView)

Called conditionally by Newton Works when the user opens the title slip, to
get extra information to add to the title slip.

target The current entry in Newton Works.

maxSize A bounds frame defining the maximum size of the
shape you can return. It contains the slots left, top,
right, and bottom.

viewDefView The viewDef for the target.

return value Return an array of one or more shapes, which are added
to the bottom of the title slip, or nil if you don’t want to
add any extra information.

DISCUSSION

The shapes you return must fit inside the rectangle described by maxSize.
Typically you don’t need the maximum size, so just return a shape that is
smaller than this size. Newton Works puts the shape you return at the
bottom of the Title slip, making the slip just big enough to hold the shape
you return.

This method is optional. If you don’t supply it, no extra information is added
to the title slip.

Newton Works Viewdef Slots and Methods 1
The slots in the viewDef that are used by Newton Works are as follows.

Slot descriptions

symbol Must be the symbol 'default for the main viewDef.
statusLeftButtons

Optional. An array of button frames to put in the left
portion of the status bar, after the "New" button. The
status bar will be updated with the buttons in this array
whenever the viewDef appears. For more details on this

C H A P T E R 1

Newton Works

1-26 Newton Works Interface Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

array, see the menuLeftButtons slot in the newtStatusBar
proto in Newton Programmer’s Reference .

statusRightButtons
Optional. An array of button frames to put in the right
portion of the status bar, before the routing and filing
buttons. The status bar will be updated with the buttons
in this array whenever the viewDef appears. For more
details on this array, see the menuRightButtons slot in the
newtStatusBar proto in Newton Programmer’s Reference .

helpManual Optional. A frame defining the help book to open. This
is the same as the newtApplication helpManual slot. This
frame must be a book frame as produced by Newton
Book Maker.

viewHelpTopic Optional. A string specifying the location to which the
help book is to open. This string must match one of the
.subject lines in the help book.

The following methods are also expected or optional in the viewDef.

DoHelp 1

viewDef:DoHelp(entry)

Called conditionally when the user chooses Help from the information picker.

entry The soup entry currently being displayed in the view.

return value If the default behavior of opening the help book is
desired, return 'loadHelp from this method; otherwise,
return any other value.

DISCUSSION

If this method exists, it will be called when the user chooses Help from the
information picker when the viewDef is visible, instead of the default
behavior of using the slots viewHelpTopic and helpManual to open a help
book. However, you can still open a help book by returning the symbol
'loadHelp from this method.

C H A P T E R 1

Newton Works

Newton Works Interface Reference 1-27
Preliminary Draft.  Apple Computer, Inc. 4/21/97

SEE ALSO

For more information, see the section “Providing Help” (page 1-16).

FindChange 1

viewDef:FindChange(action, data)

Called when the user performs a Find operation from Newton Works Find/
Change slip.

action A symbol indicating the action the user requested:
'find, 'change, or 'changeAll.

data Varies depending on the value of action. See Table 1-1
for details.

return value Varies depending on the value of action. See Table 1-1
for details.

DISCUSSION

Table 1-1 explains what you should do in this method, the value of the data
parameter, and what you should return. This method also is responsible for

C H A P T E R 1

Newton Works

1-28 Newton Works Interface Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

updating the view appropriately. For example, if action is 'find, you must
scroll to the first found item and highlight it.

GetScrollableRect 1

viewDef:GetScrollableRect()

Called to get a rectangle that describes the scrollable area of the view.

return value Return a bounds frame of integers (top, left, bottom,
right) describing the rectangle enclosing the visible
region of the view. If nil is returned, Newton Works
removes the scroll bars, and no other scroll methods are
required.

DISCUSSION

Return nil from this method if you want to implement scrolling entirely on
your own, or if scrolling is not needed.

Table 1-1 FindChange parameters and actions

action value data value FindChange method should do this

'find A string to find. Search for the next string that matches,
starting from the current selection. The
search should wrap if necessary. Return true
if the string is found, nil if not.

'change A frame with slots
findStr (string to find)
and changeStr (string to
replace with).

Replace the current selection with changeStr.
If findStr does not match the current
selection, this is an error condition. Return
true if the selection is replaced with
changeStr, nil if not.

'changeAll A frame with slots
findStr (string to find)
and changeStr (string to
replace with).

Replace all instances of findStr with
changeStr. Return the number of instances
replaced, as an integer.

C H A P T E R 1

Newton Works

Newton Works Interface Reference 1-29
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Note that if the scroll bars are displayed and you want to remove them by
returning nil from this method, you must also call UpdateAllScrollers, as
follows:

:UpdateAllScrollers(self, true, nil, true, nil);

GetScrollValues 1

viewDef:GetScrollValues()

Called to get the current scroll values.

return value Return a frame with x and y slots containing the
horizontal and vertical scroll values, as integers.

DISCUSSION

The values you return are the coordinates of the current origin of the view;
that is, the point at the upper-left corner of the view.

GetTotalHeight 1

viewDef:GetTotalHeight()

Called to get the total height of the document.

return value Return an integer that is the total height of the
document in pixels.

GetTotalWidth 1

viewDef:GetTotalWidth()

Called to get the total width of the document.

return value Return an integer that is the total width of the document
in pixels.

C H A P T E R 1

Newton Works

1-30 Newton Works Interface Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

PrefsChanged 1

viewDef:PrefsChanged(prefsFrame)

Called conditionally when the global preferences for Newton Works are
changed.

prefsFrame A frame containing the following slots:
metricUnits

True if the measurement unit is set to
centimeters; nil if inches.

internalStore
True if all items are to be stored on the
internal store; nil if they can be stored
anywhere.

return value You can return anything; it is ignored.

SaveData 1

viewDef:SaveData(entry)

Called when the current entry is about to be saved to the soup.

entry The target entry to be saved. Note that the entry could
be invalid or read-only; see the discussion.

return value Return true (if you want the entry saved), nil (if you
haven’t changed the entry), or the symbol 'NoRealChange
(if you want the data saved, but the modification time
not updated).

DISCUSSION

If there is data to be saved, modify entry to hold the new or changed data,
and return true. Note that if you return nil, the soup entry may still be saved
if it has otherwise been modified, for example, by the NewtApp framework.
Returning nil does not prevent the entry from being saved, it just notifies
Newton Works that you didn’t change it.

To save the data but not mark the entry as changed, for example if the hilite
location needs to be saved, return the symbol 'NoRealChange, instead of true.

C H A P T E R 1

Newton Works

Newton Works Interface Reference 1-31
Preliminary Draft.  Apple Computer, Inc. 4/21/97

This tells Newton Works to save the changes to the soup entry, but not to
update the modification time of the entry (as displayed in the title slip).

It is possible for your SaveData method to be passed an entry that is invalid
or read-only. In the SaveData method, before you do begin any operations
that write to the soup entry, you should perform this check:

If EntryValid(entry) and not EntryStore(entry):IsReadOnly()
then // do the operation

Scroll 1

viewDef:Scroll(scrollValues)

Called to scroll the view contents horizontally and/or vertically.

scrollValues A frame with x and y slots. You must scroll the view
contents by x pixels horizontally and y pixels vertically.

return value You can return anything; it is ignored.

DISCUSSION

Note that you must call UpdateAllScrollers from your Scroll method to
update the corresponding scroll bar control.

ToolsChanged 1

viewDef:ToolsChanged(actionSym, toolSym)

Called conditionally when a tool is installed or removed for the current
document.

actionSym The symbol 'install if a tool was installed, or 'remove if
it was removed.

toolSym The unique symbol identifying the installed or removed
tool.

return value You can return anything; it is ignored.

DISCUSSION

This method allows the viewDef to update its tools menu, if necessary.

C H A P T E R 1

Newton Works

1-32 Newton Works Interface Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

UpdateAllScrollers 1

viewDef:UpdateAllScrollers(view, totalHeightChanged, scrolledV,
totalWidthChanged, scrolledH)

Updates the scroll bar controls.

view The view (self).

totalHeightChanged A Boolean value indicating whether or not the height of
the document has changed.

scrolledV A Boolean value indicating whether or not the vertical
scroller thumb needs to be updated.

totalWidthChanged A Boolean value indicating whether or not the width of
the document has changed.

scrolledH A Boolean value indicating whether or not the
horizontal scroller thumb needs to be updated.

return value Undefined; don’t rely on it.

DISCUSSION

You call this Newton Works method to update the scroll bar controls to
reflect the new scrolled position or size of the view. You should call this
method when you open the view and anytime you make a change that
affects the size of the view (for example, changing margins or displaying
rulers or other control elements), the size of the document (for example,
adding or removing information), or the scrolled position of the document.

UpdateAllScrollers calls your methods GetScrollValues, GetTotalHeight, and
GetTotalWidth as needed to recalculate the internal scroller data structures.

Note that UpdateAllScrollers needs to be called from your Scroll method if
the scroll bar controls need visual updating.

UpdateStatusBar 1

viewDef:UpdateStatusBar()

Allows the view to update the status bar button arrays before the status bar
is redrawn.

return value You can return anything; it is ignored.

C H A P T E R 1

Newton Works

Newton Works Interface Reference 1-33
Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

This message is sent to the view identified by the viewDefView slot, if Newton
Works receives notification of an auxiliary button change. This can occur if a
package installs or removes an auxiliary button for Newton Works. When
this message is called, the view should update its statusLeftButtons and
statusRightButtons slots. This message is also sent anytime the button array
is recreated and redrawn.

Note that this method is optional.

C H A P T E R 1

Newton Works

1-34 Newton Works Interface Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Summary of Newton Works 1

Newton Works Base Application 1

newtonWorksBaseView := {
newtAppBase: view, // Newton Works base view
viewDefView: view, // current viewDef; nil if overview is current
GetNewtWorksTool: func(toolSym), // gets a specific tool
GetNewtWorksTools: func(dataTypeSym), // gets all tools for an app
RegNewtWorksTool: func(toolSym, toolFrame), // registers tool
UnregNewtWorksTool: func(toolSym), // unregisters tool
UpdateStatusBar: func(), // redraws status bar
...
}

Newton Works Stationery DataDef 1

myNewtonWorksDataDef := {
superSymbol: 'newtWorks, // required
prefs: { // app-specific preferences info

prefsTemplate: viewTemplate, // preferences slip
item: string, // preferences command name for picker
icon: frame, // bitmap frame holding icon for picker (optional)
indent: integer, // indent for name in picker (optional)
},

FindFn: func(entry, what, offset) ..., // searches soup entry for what
InfoBoxExtract: // called when title slip is opened

func(target, maxSize, viewDefView) ...,
...
}

Newton Works Stationery ViewDef 1

myNewtonWorksViewDef := { // viewDef for screen (not printing)
symbol: 'default, // required
statusLeftButtons: array, // left button array

C H A P T E R 1

Newton Works

Newton Works Interface Reference 1-35
Preliminary Draft.  Apple Computer, Inc. 4/21/97

statusRightButtons: array, // right button array
helpManual: frame, // book frame identifying help book
viewHelpTopic: string, // location to open help book to
DoHelp: func(entry) ..., // called when user chooses Help command
FindChange: // called when user performs a document Find operation

func(action, data) ...,
GetScrollableRect: func() ..., // called to get the scrollable rect
GetScrollValues: func() ..., // called to get the current scroll values
GetTotalHeight: func() ..., // called to get the total height
GetTotalWidth: func() ..., // called to get the total width
PrefsChanged: func(prefsFrame) ..., // called when global prefs change
SaveData: func(entry) ..., // called when entry is about to be saved
Scroll: func(scrollValues) ..., // called to scroll the view
ToolsChanged: // called when tool is installed or removed for app

func(actionSym, toolSym) ...,
UpdateAllScrollers: // updates scroll bar controls

func(view, totalHeightChanged, scrolledV, totalWidthChanged, scrolledH),
UpdateStatusBar: // called so view can update status bar button arrays

func() ...,
...
}

C H A P T E R 1

Newton Works

1-36 Newton Works Interface Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

About the Draw Application 2-1
Preliminary Draft.  Apple Computer, Inc. 4/21/97

C H A P T E R 2

Newton Works Draw
Application 2

The Draw application is implemented as stationery in the Newton Works
framework. It is accessed by choosing “Drawing” from the Newton Works
New picker. This chapter describes how you can programmatically create
and edit the graphic objects in the current drawing, and add tools, stamps,
and patterns to this application.

This chapter assumes familiarity with the Newton object-based graphic
system, as defined in Chapter 6, “Drawing and Graphics 2.1,” of this
document, and Chapter 13, “Drawing and Graphics,” in Newton
Programmer’s Guide.

You may wish to read Chapter 1, “Newton Works,” before reading this
chapter.

About the Draw Application 2

The Draw application is one of the built-in Newton Works stationeries.

Figure 2-0
Listing 2-0
Table 2-0

C H A P T E R 2

Newton Works Draw Application

2-2 About the Draw Application

Preliminary Draft.  Apple Computer, Inc. 4/21/97

User Interface 2
The Draw application has a typical Newton Works appearance. It contains a
status bar, a title bar, and both horizontal and vertical scroll bars. In addition,
there is a tool bar and a large editable view called the canvas. All drawing
takes place in the canvas. The tool bar contains the tools that create graphical
objects and set the fill and pen styles.

Figure 2-1 The Newton Works Draw application

This application does not include folder tabs if it is in Classroom Mode. For
more information on Classroom Mode, see “User Interface” (page 2-2) in
Chapter 2, “Newton Works Draw Application.”

C H A P T E R 2

Newton Works Draw Application

Using the Drawing Application Interface 2-3
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Programmer’s Overview 2
You can add tools, stamps, and patterns to this application, and manipulate
the contents of the canvas. The patterns are used in the fill pattern tool’s
palette (the paint bucket). The stamps are used by the stamp tool; they add
bitmaps or picture shapes to the canvas. The tools are added to the tool bar,
and should create a graphical shape of some sort.

If you wish to add bitmaps to the Draw application, you can do this through
either the tool or the stamp interface. In general, you should include bitmaps
as stamps; this is what the stamp tool is designed to do. It is also easier to
programmatically add stamps, than to add tools.

As with other Newton Works stationery, you can add tools to the Tools
picker. This is not discussed in this chapter, this chapter only describes how
to add tools to the tool bar. For information on adding to the Tools picker, see
“Working With the Tools Picker” (page 1-18).

Using the Drawing Application Interface 2

This section describes the NewtonScript interface to the Draw application.

Adding Custom Drawing Tools 2
You can add tools to the Draw application. These tools allow the user to
create new types of draw objects. Note that in many cases, it makes more
sense to create new graphic objects as bitmaps via the stamp interface; see
“Adding Stamps to the Stamp Tool” (page 2-7).

Tools are added by calling the Draw application viewDef RegTool method.
Each new tool is added to the end of the toolbar. The toolbar grows off the
right end of the screen, if enough tools are added.

Tools are based on the protoDrawTool frame. You are required to supply the
following:

■ an icon to display in the toolbar

■ a class symbol that identifies the tool and the object it creates

C H A P T E R 2

Newton Works Draw Application

2-4 Using the Drawing Application Interface

Preliminary Draft.  Apple Computer, Inc. 4/21/97

■ a MakeObject method that returns a graphic shape to add to the canvas

■ a SetAttribute method to respond to the user selecting, and perhaps
modifying the object

The object created should be a shape array with the same class as the tool.
This array should have a style frame at the front to make sure you get the
drawing environment you want. The last two objects in the array should be
an “invisible” style and a rectangle shape. The rectangle should be the size of
the shape you are returning, and the style frame should be:

{penSize: 0, fillPattern: vfNone, selection: nil}

This rectangle at the end of your shapes array is for the selection handles.

The default behavior of protoDrawTool is to draw a bounding box as the user
drags the pen across the screen. This creates a bounds box which is passed to
the tool’s MakeObject method. You can override this behavior in a number of
ways.

If it makes more sense to create the object with a tap, instead of by dragging
a bounding box, set the tool’s createByTapping slot to true, and its
createByDragging slot to nil. The stamp tool, for example, creates its objects
with pen taps.

You may also draw something other than a rectangle as the user drags the
bounding box. The oval tool, for example, draws an oval as the bounding
box is being created. To draw your own object, set your tool’s dragARectangle
slot to nil, and optionally provide a MakeDragObject method. The
MakeDragObject method is called to return a shape as the bounding box is
being dragged. The default version of this method simply sends your tool a
MakeObject message. If the objects your tools creates are very complicated,
you may want to create a simpler object here. Your MakeDragObject method
could return the outline of your object, for example.

The example below creates a simple tool that makes a shape comprised of an
equal size oval and rectangle.

Listing 2-1 Adding a tool to the Draw application’s tool bar

OpenResFile(Home & "resources");
DefineGlobalConstant ('kToolIcon ,

C H A P T E R 2

Newton Works Draw Application

Using the Drawing Application Interface 2-5
Preliminary Draft.  Apple Computer, Inc. 4/21/97

MakePixFamily (nil, nil, {rsrcSpec:"toolIcon", bitdepth:1}));
CLoseResFile();

DefineGlobalConstant('kMyDrawToolTemplate,
{ _proto : UR('|Draw:NEWTON|, 'protoDrawTool), // get proto from unit

class : '|OvalRect:MySig|,
icon : kToolIcon,
MakeObject : func (left,top,right,bottom,style)
begin

local l := Min(left,right), r := Max(left,right),
t := Min(top,bottom), t := Max(top,bottom);

local oval := MakeOval (l,t,r,b);
local rect := MakeRect (l,t,r,b);
local mainStyle := Clone(style);
mainStyle.selection := nil;

[|OvalRect:MySig|:
mainStyle,
rect,
oval,
{ penSize:0, fillPattern:vfNone, selection:nil },
rect,

];
end,

SetAttribute : func (shape, attribute, newValue)
begin

//selection handles go on the invisible rect.
if attribute = 'selection then

shape[3] . selection := newValue;
else shape[0].(attribute) := newValue;

end
});

InstallScript := func(partFrame, removeFrame)
begin

local viewDef := GetViewDefs('drawPaper).default;
local sym := EnsureInternal(kAppSymbol);
if viewDef then

viewDef:RegTool(sym, kMyDrawToolTemplate);
end;

RemoveScript := func (removeFrame)
begin

local viewDef := GetViewDefs('drawPaper).default;
if viewDef then

C H A P T E R 2

Newton Works Draw Application

2-6 Using the Drawing Application Interface

Preliminary Draft.  Apple Computer, Inc. 4/21/97

viewDef:UnRegPatterns(kAppSymbol);
end;

Adding Patterns and Gray Tones to the Fill Tool 2
To add patterns or gray tones to the fill pattern palette, use the RegPatterns
method of the Draw application’s viewDef. This method takes two
arguments, a uniquely identifying symbol and an array of patterns. This
array can contain any of the kRGB_GrayXX gray tone constants, a packed RGB
integer (as returned by PackRGB), or a pattern, gray pattern, or dithered
pattern. For information on these values see “Specifying Shades of Gray”
(page 6-9) and “Using Patterns, Gray Patterns, and Dithered Patterns”
(page 6-11). The viewDef contains a UnRegPatterns method to remove
patterns from the fill palette.

Patterns are usually added in an auto part package. The sample code below
shows the full content of a text file that creates such an auto part.

Listing 2-2 Adding to the Draw application’s fill tool

DefineGlobalConstant('kCheckeredPattern,
MakeBinaryFromHex ("F0F0F0F00F0F0F0F",'pattern)

InstallScript := func (partFrame, removeFrame)
begin

local viewDef := GetViewDefs('drawPaper).default;
local sym := EnsureInternal(kAppSymbol);
local pats := [kRGB_Gray6,

vfGray,
kCheckeredPattern,
{ class :'ditherPattern,

pattern : vfLtGray,
foreground : kRGB_Gray2,
background : kRGB_GrayD,

}
];

if viewDef then
viewDef:RegPatterns(sym, pats)

end;

RemoveScript := func (removeFrame)
begin

C H A P T E R 2

Newton Works Draw Application

Using the Drawing Application Interface 2-7
Preliminary Draft.  Apple Computer, Inc. 4/21/97

local viewDef := GetViewDefs('drawPaper).default;
if viewDef then

viewDef:UnRegPatterns(kAppSymbol);
end;

Adding Stamps to the Stamp Tool 2
To add stamps to the stamp palette, use the RegStamps method of the Draw
application’s viewDef. This method takes two arguments, a uniquely
identifying symbol and an array of stamps. The stamp array should contain
no more than 24 stamps, since the stamp palette only displays 24 stamps at a
time. If you wish to add more than 24 stamps, make more than one array,
and call RegStamps separately for each array.

The stamps can be pix families or picture objects, and should be less than
1 KB. For information on pix families and picture objects, see Chapter 6,
“Drawing and Graphics 2.1.” There is no limit on the size of the image, but
you must be aware of the memory consumption.

Note

The image is stored in a soup, so you are ultimately limited
by the maximum size of a soup entry (currently 64 KB).
Soups are described in Chapter 11, “Data Storage and
Retrieval,”in Newton Programmer’s Guide. ◆

The Draw application’s viewDef contains an UnRegStamps method to remove
stamps added with RegStamps.

Stamps are usually added in an auto part package. The sample code below
shows the full content of a text file that creates such an auto part.

Listing 2-3 Adding stamps to the Draw application

OpenResFile(Home & "myResourceFile");

//Note that only stamp6 really needs 16 grays, and some stamps are OK
//using only 4 grays. This saves a lot of space over importing all the
//stamps at a bit depth of 4.
DefineGlobalConstant('kStampArray , [

MakePixFamily (nil,nil,{rsrcSpec :"stamp1", bitdepth : 1}),

C H A P T E R 2

Newton Works Draw Application

2-8 Using the Drawing Application Interface

Preliminary Draft.  Apple Computer, Inc. 4/21/97

MakePixFamily (nil,nil,{rsrcSpec :"stamp2", bitdepth : 1}),
MakePixFamily (nil,nil,{rsrcSpec :"stamp3", bitdepth : 1}),
MakePixFamily (nil,nil,{rsrcSpec :"stamp4", bitdepth : 2}),
MakePixFamily (nil,nil,{rsrcSpec :"stamp5", bitdepth : 2}),
MakePixFamily (nil,nil,{rsrcSpec :"stamp6", bitdepth : 4}),

]);
CloseResFile();

InstallScript := func(partFrame, removeFrame)
begin

local viewDef := GetViewDefs('drawPaper).default;
local sym := EnsureInternal(kAppSymbol);

if viewDef then
viewDef:RegStamps(sym, kStampArray);

end;

RemoveScript := func(removeFrame)
begin

local sym := EnsureInternal(kAppSymbol);
local viewDef := GetViewDefs('drawPaper).default;

if viewDef then
viewDef:UnRegStamps(sym);

end;

Draw Application Methods 2
In addition to the RegTool, RegPatterns, and RegStamps methods, and their
unregistering counterparts discussed elsewhere in this chapter, the Draw
application’s viewDef contains three other methods of interest: GetContents,
SetContents, and GetCanvas. The GetContents and SetContents methods are
used to manipulate the entire contents of the current drawing.

The GetCanvas method returns a reference to the canvas view; a number of
methods are defined in this view which are available to you. For more
information on the canvas view, see “The Canvas and Its Methods”
(page 2-9).

The way you get a reference to the Draw application viewDef, to send these
methods to, depends on the environment in which your code is executing.

■ If you are writing code for a tool, this code executes as a child of the
canvas. In this case you can send these methods to self. The Draw

C H A P T E R 2

Newton Works Draw Application

Using the Drawing Application Interface 2-9
Preliminary Draft.  Apple Computer, Inc. 4/21/97

application is found via parent inheritance, as in the following sample
calls:

:GetContents();
:GetCanvas();

■ If you are writing code for a tool to be added to the Tools picker, with the
Newton Works RegNewtWorksTool method, this code executes in the
environment of Newton Works, not its Draw application viewDef. In this
case, send these messages to the viewDefView slot, as in the following
sample calls:

viewDefView:GetContents();
viewDefView:GetCanvas();

■ If your code is executing outside these environments, you can get a
reference to the Draw application by explicitly accessing Newton Work’s
viewDefView slot. However, in this case it is not guaranteed that the Draw
application is the current displaying viewDef; you must check for this
before sending these messages, as in the following code:

if GetRoot().newtWorks AND Visible(GetRoot().newtWorks) then
begin

local curNWApp := GetRoot().newtWorks.viewDefView;
if GetVariable(curNWApp, 'currentdatatype) = 'drawPaper then
begin

local cont := curNWApp:GetContents();
local can := curNWApp:GetCanvas();
...

end;
end;

The Canvas and Its Methods 2
The canvas view provides methods to programmatically add a shape to it,
and a number of methods that manipulate the set of currently selected
shapes. If you are writing code for a tool in the tool bar, simply send these
methods to self. Otherwise, use the GetCanvas method described in “Draw
Application Methods” (page 2-8).

The current drawing style is stored in the canvas’ currentDrawStyle slot. You
may change the values in this style frame programmatically; the user can
also set some of these slot through the user interface.

C H A P T E R 2

Newton Works Draw Application

2-10 Draw Application Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

The AddShape method adds a new shape to the canvas. The canvas provides a
DirtyShape method to redraw the part of the canvas where the new shape
was added. Simply pass the same shape to both functions, as in:

local shape := MakeRect (0,0,100,100);
:AddShape(shape,nil,nil);
:DirtyShape(shape);

A number of functions exist to select shapes, and manipulate them. You can
programmatically call many of the methods the user accesses though the
Edit and Arrange pickers. See “The Canvas” (page 2-17).

Draw Application Reference 2

This section describes the protoDrawTool, the canvas’ slots and methods, and
the Draw application’s methods.

Proto 2
The protoDrawTool is described below. Tool templates passed to RegTool
should be based on this prototype.

protoDrawTool 2

This proto provides the basic functionality of a tool template. You must
override the class, icon, MakeObject, and SetAttribute slots.

C H A P T E R 2

Newton Works Draw Application

Draw Application Reference 2-11
Preliminary Draft.  Apple Computer, Inc. 4/21/97

slot description

class Symbol that uniquely identifies the tool and the graphic
objects created by this tool. This symbol should include
your developer signature.

icon Pix family that represents this tool in the toolbar. Note
that the tool border is drawn for you—this image
should supply only the interior bits.

createByTapping The value true specifies that the user can tap to create
an object. The default value is nil.

createByDragging The value true specifies that the user can drag out
bounds for an object. That is, the first tap specifies the
top and left slots of the object’s bounds, and where the
pen is lifted specifies the right and bottom slots. The
default value is true.

dragARectangle The value true specifies that the user drags out a plain
rectangle when creating an object. If the value of this
slot is nil, the template’s MakeDragObject method is
invoked. The default value is true.

The methods of protoDrawTool are described in the following sections.

C H A P T E R 2

Newton Works Draw Application

2-12 Draw Application Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

MakeObject 2

protoDrawTool:MakeObject(left, top, right, bottom, style)

Called to create a new graphic object when the user taps or drags in the
canvas with the tool.

left The x-coordinate of the start point of the rectangle the
user dragged with this tool.

top The y-coordinate of the start point of the rectangle the
user dragged with this tool.

right The x-coordinate of the end point of the rectangle the
user dragged with this tool.

bottom The y-coordinate of the start point of the rectangle the
user dragged with this tool.

style A style frame with the current user defaults for penSize,
penPattern, fillPattern, and font.

return value An array of shapes with the same class as the tool.

DISCUSSION

You must provide your own version of this method in your tool template.

The array returned should have a style frame at the front to make sure you
get the drawing environment you want. The last two objects in the array
should be an “invisible” style and a rectangle shape. The rectangle should be
the size of the shape you are returning, and the style frame should be:

{penSize: 0, fillPattern: vfNone, selection: nil }

SPECIAL CONSIDERATIONS

If the user drags up and to the left, the values passed as the right and bottom
arguments can be less than those passed as the left and top arguments. The
left slot in your shape’s bounds should be Min(left, right), the top slot
should be Min(top, bottom), and so on.

C H A P T E R 2

Newton Works Draw Application

Draw Application Reference 2-13
Preliminary Draft.  Apple Computer, Inc. 4/21/97

SetAttribute 2

protoDrawTool:SetAttribute(shape, attribute, newValue)

Called when a shape is selected or draw attributes are changed.

shape The shape that has been selected or altered.

attribute A symbol, the name of one of the following style frame
slots: selection, penSize, penPattern, fillPattern, or
font.

newValue The new value of the style frame slot specified in
attribute.

return value You can return anything; it is ignored.

MakeDragObject 2

protoDrawTool:MakeDragObject(left, top, right, bottom, style)

Called to create a shape to show while the user drags out a bounding box.

left The x-coordinate of the start point of the rectangle the
user dragged with this tool.

top The y-coordinate of the start point of the rectangle the
user dragged with this tool.

right The x-coordinate of the end point of the rectangle the
user dragged with this tool.

bottom The y-coordinate of the start point of the rectangle the
user dragged with this tool.

style A style frame with the current user defaults for penSize,
penPattern, fillPattern, and font.

return value A shape array.

DISCUSSION

The default version of this method calls your template’s MakeObject
method. This message is only sent if the tool template’s dragARectangle slot
is nil.

C H A P T E R 2

Newton Works Draw Application

2-14 Draw Application Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

AdjustBounds 2

protoDrawTool:AdjustBounds(shape, style, left, top, right, bottom,
constrain)

Called to limit the bounds of the object as the user is dragging out a new
bounding box or resizing an existing object.

shape Either a graphic object, or nil if a new object is being
created and dragARectangle is set to true.

style The current user defaults for penSize, penPattern,
fillPattern, and font.

left The x-coordinate of the start point of the rectangle the
user dragged with this tool.

top The y-coordinate of the start point of the rectangle the
user dragged with this tool.

right The x-coordinate of the end point of the rectangle the
user dragged with this tool.

bottom The y-coordinate of the start point of the rectangle the
user dragged with this tool.

constrain The value true indicates that the shift key is pressed.

return value A bounds frame.

DISCUSSION

The default version of this method limits the bounding box to always be
square when constrain is true. If you override this method, you should do
something similar.

SPECIAL CONSIDERATIONS

If the user drags up and to the left, the values passed as the right and bottom
arguments can be less than those passed as the left and top arguments. The
left slot in bounds frame you return should be Min(left, right), the top slot
should be Min(top, bottom), and so on.

C H A P T E R 2

Newton Works Draw Application

Draw Application Reference 2-15
Preliminary Draft.  Apple Computer, Inc. 4/21/97

ScaleShape 2

protoDrawTool:ScaleShape(shape, oldBounds, newBounds)

Called when user is resizing an existing object; this method actually resizes
the object.

return value Either shape with the bounds altered or a new shape.

DISCUSSION

The default version of this function calls the global function ScaleShape and
flips the shape with MungeShape as necessary.

CanvasClickScript 2

protoDrawTool:CanvasClickScript(unit)

Called when user taps in the canvas and your tool is selected.

unit Stroke unit passed to this method by the recognition
system. For information on stroke units, see Chapter 9,
“Recognition,” in Newton Programmer’s Guide.

return value Your must return one of the following values:
true Tool has handled click completely.
nil Tool has failed, click will turn into tap or

highlight.
'continue Tool wants default shape creation

behavior. That is, tapping or dragging out
a shape. All of the tool methods (such as
MakeObject, AdjustBounds, etc.) are called
normally.

graphicalObject
Tool has created a graphical object to be
added to the canvas. This object should be
of the same type as returned by the tool’s
MakeObject method.

C H A P T E R 2

Newton Works Draw Application

2-16 Draw Application Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

This function is intended to provide additional control over the creation of
shapes.

ToolClickScript 2

protoDrawTool:ToolClickScript(unit)

Called when user taps on this template’s tool in the tool bar.

unit Stroke unit passed to this method by the recognition
system. For information on stroke units, see Chapter 9,
“Recognition,” in Newton Programmer’s Guide.

return value You can return anything; it is ignored.

DISCUSSION

This function lets the tool do its own tracking of the click. For example, the
stamps tool uses this method to display a slip containing the stamp bitmaps.
If you override this method, call the inherited ToolClickScript method.

ToolBegin 2

protoDrawTool:ToolBegin()

Called before the ToolClickScript method.

return value You can return anything; it is ignored.

DISCUSSION

Your tool can use this method to perform setup tasks before creating shapes.

ToolEnd 2

protoDrawTool:ToolEnd()

Called when the user selects a tool other than the currently active one.

return value You can return anything; it is ignored.

C H A P T E R 2

Newton Works Draw Application

Draw Application Reference 2-17
Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

Your tool can use this method to perform housekeeping tasks.

Data Structures 2
This section describes the canvas view.

The Canvas 2

The canvas is the view in which all drawing takes place. You can get a
reference to the canvas with the Draw application’s viewDef GetCanvas
method. It has one slot of interest:

Slot Descriptions

currentDrawStyle The current (default) drawing style.

The canvas’s methods are described in the following sections.

AddShape 2

canvas:AddShape(shape, style, nil)

Adds shape to the document.

shape The shape to add.

style The style to use for drawing shape. If style is nil, the
default drawing style is used.

nil The third argument must be nil.

return value Undefined; do not rely on it.

AddShapeToSelection 2

canvas:AddShapeToSelection(shape)

Adds shape to the current selection.

shape An existing shape in the current document.

return value Undefined; do not rely on it.

C H A P T E R 2

Newton Works Draw Application

2-18 Draw Application Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

ClearSelection 2

canvas:ClearSelection()

Deselects the current selection.

return value Undefined; do not rely on it.

SelectAll 2

canvas:SelectAll()

Selects all shapes.

return value Undefined; do not rely on it.

GetSelectedShapes 2

canvas:GetSelectedShapes(makeCopy)

Returns an array of shapes in the current selection.

makeCopy True specifies that this method is to return a DeepClone
of the shapes.

return value A shape array.

◆ W A R N I N G

If you don't work with a copy of the shapes, don't edit them
in any way. ◆

DirtyShape 2

canvas:DirtyShape(shape)

Dirties the canvas just enough to draw the area around shape.

return value Undefined; do not rely on it.

EditGroup 2

canvas:EditGroup()

Groups the current selection.

return value Undefined; do not rely on it.

C H A P T E R 2

Newton Works Draw Application

Draw Application Reference 2-19
Preliminary Draft.  Apple Computer, Inc. 4/21/97

EditUnGroup 2

canvas:EditUnGroup()

Ungroups the current selection.

return value Undefined; do not rely on it.

EditCopy 2

canvas:EditCopy()

Copies the current selection to the clipboard.

return value Undefined; do not rely on it.

EditCut 2

canvas:EditCut()

Cuts the current selection and places it on the clipboard.

return value Undefined; do not rely on it.

EditPaste 2

canvas:EditPaste()

Replaces the current selection with the contents of the clipboard.

return value Undefined; do not rely on it.

EditDelete 2

canvas:EditDelete()

Deletes the current selection.

return value Undefined; do not rely on it.

EditDuplicate 2

canvas:EditDuplicate()

Duplicates the current selection.

return value Undefined; do not rely on it.

C H A P T E R 2

Newton Works Draw Application

2-20 Draw Application Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

EditUndo 2

canvas:EditUndo()

Reverses the effects of the most recent editing operation.

return value Undefined; do not rely on it.

Functions and Methods 2
This section describes methods provided by the Draw application’s viewDef.

Draw Application viewDef Methods 2

This section describes methods provided by the Draw application’s viewDef.

GetCanvas 2

viewDefView:GetCanvas()

Returns the canvas view, which contains the actual style/shape pairs in the
document.

return value The canvas view.

GetContents 2

viewDefView:GetContents()

Returns an array with all the shapes in the current document.

return value A shape array.

DISCUSSION

This array is always an even length of style/shape pairs. Every shape is
preceded by a style.

C H A P T E R 2

Newton Works Draw Application

Draw Application Reference 2-21
Preliminary Draft.  Apple Computer, Inc. 4/21/97

SetContents 2

viewDefView:SetContents(newShapes)

Replaces the contents of the current drawing with newShapes, an array of
shapes.

newShapes An array containing any combination of styles and
shapes.

return value Undefined; do not rely on it.

RegPatterns 2

viewDefView:RegPatterns(sym, arrayOfPatterns)

Registers a set of gray tones or patterns to be used with the fill settings tool.

sym A symbol uniquely identifying your set of patterns, this
symbol should include your developer signature.

arrayOfPatterns An array of patterns or gray tones. Possible values are
the kRGB_GrayXX constants, RGB values (as returned by
PackRGB), or a pattern, gray pattern, or dithered pattern.
For more information on these values, see “Specifying
Shades of Gray” (page 6-9) and “Using Patterns, Gray
Patterns, and Dithered Patterns” (page 6-11).

return value Undefined; do not rely on it.

SEE ALSO

For an example of using this method, see Listing 2-2 (page 2-6).

UnRegPatterns 2

viewDefView:UnRegPatterns(sym)

Unregisters a set of patterns registered with RegPatterns.

sym The symbol used in the call to RegPatterns.

return value Undefined; do not rely on it.

C H A P T E R 2

Newton Works Draw Application

2-22 Draw Application Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

SEE ALSO

For an example of using this method, see Listing 2-2 (page 2-6).

RegStamps 2

viewDefView:RegStamps(sym, arrayOfStamps)

Registers an array of stamps to be used with in the stamp tool.

sym A symbol uniquely identifying your set of patterns. This
symbol should include your developer signature.

arrayOfStamps An array of pix families or picture object. This array
should contain no more than 24 items. For more details,
see “Adding Stamps to the Stamp Tool” (page 2-7).

return value Undefined; do not rely on it.

SEE ALSO

For an example of using this method, see Listing 2-3 (page 2-7).

UnRegStamps 2

viewDefView:UnRegStamps(sym)

Unregisters a set of stamps registered with RegStamps.

sym The symbol used in the call to RegStamps.

return value Undefined; do not rely on it.

SEE ALSO

For an example of using this method, see Listing 2-3 (page 2-7).

C H A P T E R 2

Newton Works Draw Application

Draw Application Reference 2-23
Preliminary Draft.  Apple Computer, Inc. 4/21/97

RegTool 2

viewDefView:RegTool(sym, toolTemplate)

Registers a set of stamps to be used by the stamp tool.

sym A symbol uniquely identifying your tool, this symbol
should include your developer signature.

toolTemplate A frame based on protoToolTemplate.

return value Undefined; do not rely on it.

SEE ALSO

For an example of using this method, see Listing 2-1 (page 2-4).

UnRegTool 2

viewDefView:UnRegTool(sym)

Unregisters a set of stamps registered with RegTool.

sym The symbol used in the call to RegTool.

return value Undefined; do not rely on it.

SEE ALSO

For an example of using this method, see Listing 2-1 (page 2-4).

C H A P T E R 2

Newton Works Draw Application

2-24 Draw Application Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Summary 2

Proto 2

protoDrawTool 2

myToolTemplate := {
_proto : protoDrawTool,
class : classSymbol, // this tool’s symbol
icon : pixFamily, //icon for tool bar
createByTapping : Boolean , //create object with pen tap?
createByDragging : Boolean , //create object by dragging bounds?
dragARectangle: Boolean , //create object by dragging a rectangle?
MakeObject: //make a new object

func(left, top, right, bottom, style) ...
SetAttribute: //set an attribute

func(shape, attribute, newValue) ...
MakeDragObject: // make an object to show user when dragging a new obj.

func(left, top, right, bottom, style) ...
AdjustBounds: // contrain the bounding rect a user drags

func(shape, style, left, top, right, bottom, constrain) ...
ScaleShape: // scale an object

func(shape, oldBounds, newBounds) ...
CanvasClickScript : // called when user touches canvas w/your tool

func(unit)...
ToolClickScript : // called when user taps your tool in the tool bar

func(unit) ...
ToolBegin : // called before ToolCickScript to set up too

func() ...
ToolEnd : // called when anothertool is selected, to clean up

func() ...
...
}

C H A P T E R 2

Newton Works Draw Application

Draw Application Reference 2-25
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Data Structures 2

The Canvas 2

canvasView := {
currentDrawStyle :
AddShape : func(shape, style, nil) ... //add a shape to the canvas
AddShapeToSelection : func(shape) ... //selects a shape
ClearSelection : func() ... //clears selected shapes
SelectAll : func() ... // selects all shapes on the canvas
GetSelectedShapes : func(makeCopy) ... //returns selected shapes
DirtyShape : func(shape) ... //marks as dirty area under a shape
EditGroup : func() ... //groups selection
EditUnGroup : func() ... //ungroups selection
EditCopy : func() ... //copies selection
EditCut : func() ... //cuts selection
EditPaste : func() ... //pastes clipboard contents
EditDelete : func() ... //deletes selection
EditDuplicate : func() ... //duplicates selection
EditUndo : func() ... //undos last undoable action
...
}

Draw Application viewDef 2

drawApplicationViewDef := {
GetCanvas : func() ... //returns canvas view
GetContents : func() ... //returns contents of canvas
SetContents : func(newShapes) ... //sets contents of canvas
RegPatterns : func(sym, arrayOfPatterns) ... //registers new patterns
UnRegPatterns : func(sym) ... //unregisters new patterns
RegStamps : func(sym, arrayOfStamps) ... //registers new stamps
UnRegStamps : func(sym) ... //unregisters new stamps
RegTool : func(sym, toolTemplate) ... //registers new tool
UnRegTool : func(sym) ... //unregisters new tool
...
}

C H A P T E R 2

Newton Works Draw Application

2-26 Draw Application Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

About protoTXView And the View System 3-1
Preliminary Draft.  Apple Computer, Inc. 4/21/97

C H A P T E R 3

Word Processing Views 3

This document describes how to use word-processing views, which are
provided by protoTXView. This view supports the editing of large amounts of
text. The Newton Works word processor packaged with the eMate 300 uses
this view to provide word processing operations.

About protoTXView And the View System 3

You implement word-processing views in your applications with
protoTXView. This section describes some of the non-standard view features
of protoTXView.

Figure 3-0
Listing 3-0
Table 3-0

C H A P T E R 3

Word Processing Views

3-2 About protoTXView And the View System

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Application-defined Methods 3
The protoTXView proto supports some, but not all, of the standard Newton
view system application-defined methods. Table 3-1 shows the status of
application-defined methods with protoTXView.

Table 3-1 Use of application-defined methods in protoTXView

Method Use in protoTXView

ViewGestureScript Supported.

ViewClickScript Supported.

ViewStrokeScript Supported.

ViewWordScript Supported.

ViewKeyDownScript Called if you specify vSingleKeystrokes in
the textFlags slot.

ViewKeyUpScript Called if you specify vSingleKeystrokes in
the textFlags slot.

ViewScrollUpScript Use protoTXView:Scroll for scrolling. Note,
however, that the view system does send
this message to protoTXView.

ViewScrollDownScript Use protoTXView:Scroll for scrolling. Note,
however, that the view system does send
this message to protoTXView.

ViewOverviewScript Not supported.

ViewGetDropTypesScript Supported.

ViewGetDropDataScript Supported.

ViewHiliteScript Not supported. Use the protoTXView hilite
methods instead. See “Highlighting
Methods” (page 3-40).

C H A P T E R 3

Word Processing Views

About protoTXView And the View System 3-3
Preliminary Draft.  Apple Computer, Inc. 4/21/97

View Slots 3
Some of the standard view slots are used differently for protoTXView, as
shown in Table 3-2.

Other View Features 3
This section describes several characteristics of protoTXView.

■ No child views are allowed within protoTXView. If a child is added to a
protoTXView, it will not update correctly, since the protoTXView assumes it
has control of the entire drawing area.

■ No word or text recognition is done in protoTXView views.

■ The drag and drop hooks are all supported. Like editView, protoTXView
supports the movement of 'text, 'ink, 'picture and 'polygon content; in
addition, protoTXView also supports 'shape typessl.

The formats of the first four types are the same as for editView, and are

Table 3-2 Use of standard view system slots in protoTXView

Slot name Use in protoTXView

recConfig Ignored.

_keyboard Ignored.

textFlags Ignored except for the vSingleKeystrokes flag.

viewFont Used to determine the default font in your view. If
this slot is missing, the userFont is used as the
default font.

viewJustify Can be used to specify sibling and parent-relative
alignment, but is not used with the protoTXView
view.

viewFormat Ignored.

viewLineSpacing Ignored.

C H A P T E R 3

Word Processing Views

3-4 About protoTXView And the View System

Preliminary Draft.  Apple Computer, Inc. 4/21/97

documented in Newton Programmer’s Guide. The shape format consists of
a shape array or shape frame, which can be drawn with DrawShape. You
can override drag/drop behavior by implementing any of the view
system application-defined methods, including ViewGetDropTypesScript
and ViewGetDropDataScript.

About Paged and Non-paged Word-Processing Views 3
You can use either paged or non-paged views with protoTXView. The text in a
paged view is laid out in many pages, with text flowing from one page to
another; pages are shown separated by a dotted line. The text in a non-paged
view is all contained in one box. You specify whether a word-processing
view is paged or non-paged when you set up its characteristics in the

C H A P T E R 3

Word Processing Views

About protoTXView And the View System 3-5
Preliminary Draft.  Apple Computer, Inc. 4/21/97

protoTXView:SetGeometry method. Paged versus non-paged views have a few
other implications, as shown in Table 3-3.

Note

The sample code in this chapter for the TXWord program
uses a paged word-processing view. ◆

Table 3-3 Paged versus non-paged views

Issue Paged views Non-paged views

Text layout Text flows from one
page to another, as
required.

All text is contained within
one bounding box.

Text height
computation

Text height is
automatically adjusted
as you add or remove
text.

Text height is not
automatically adjusted,
which means that newly
added text might not appear
in the text region.

As a result, you might want
to define the text height as an
arbitrarily large number in
your call to SetGeometry.

Note that this is only an issue
for read-write views.

Scrolling Default scrolling
behavior is to scroll to
the bottom of a page,
even if the text does not
fill the entire page.

For proper scrolling, you
need to write a function to
determine the actual text
height in your view.

Note that this is related to
text height computation (see
the previous table entry) and
is only an issue for read-write
views.

See Listing 3-5 for an
example.

C H A P T E R 3

Word Processing Views

3-6 About protoTXView And the View System

Preliminary Draft.  Apple Computer, Inc. 4/21/97

About Scrolling with protoTXView 3
Your word processing views automatically scroll when the user is entering
text with the keyboard or pen. protoTXView also provides a number of
scrolling methods that you can use if you have attached scrollers (vertical or
horizontal) to the view that encloses your protoTXView.

Table 3-4 summarizes the protoTXView scrolling methods, which are
described in more detail in “Scrolling Methods” (page 3-38).

About Storing protoTXView Documents 3
You can store protoTXView word-processing documents in RAM-based soup
objects, or you can store a word-processing document as a virtual binary

Table 3-4 Scrolling methods of protoTXView

Method Description

Scroll Scrolls the contents of the word-processing
view horizontally and/or vertically.

GetScrollValues Returns the current scroll values, which you
can use to adjust the thumbbars of attached
scrollers

GetTotalHeight Returns the current total text height, which
you can use to set the maximum value of a
vertical scroller.

GetTotalWidth Returns the total text (or page) width, which
you can use to set the maximum value of a
horizontal scroller.

GetScrollableRect Returns a frame describing the coordinates
of the text display rectangle.

ViewUpdateScrollersScript Called by protoTXView when the text is
scrolled or when the text height changes.
Used to notify you that any attached
scrollers might need updating.

C H A P T E R 3

Word Processing Views

About protoTXView And the View System 3-7
Preliminary Draft.  Apple Computer, Inc. 4/21/97

object (VBO). The VBO is a “black-box” representation of the data in your
view. You can perform a limited set of operations on these objects, as follows:

■ You can use the protoTXView:Externalize method to save the contents of a
word-processing view to a VBO.

■ You can use the protoTXView:Internalize method to replace the contents
of a word-processing view with the data stored in a VBO that was
previously stored with a call to protoTXView:Externalize.

■ You can call protoTXView:IsModified to determine if your view has
changed since the most recent call to protoTXView:Internalize or
protoTXView:Externalize.

■ You can use protoTXViewFinder methods to search for text in a VBO
without creating a word-processing view.

Using protoTXViewFinder to Search Documents 3
The Newton System Software provides a second proto that you can use with
word-processing views: protoTXViewFinder . This proto allows you to search
for text in a word-processing document without incurring the overhead of
creating a word-processing view. For more information see
“protoTXViewFinder” (page 3-45).

Word-Processing View User Interface 3
Word-processing views can display the ruler, which shows the user the
current formatting settings. When the ruler is displayed, it always appears at
the top of the view, as shown in Figure 3-1.

C H A P T E R 3

Word Processing Views

3-8 Using Word Processing Views

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Figure 3-1 The displayed ruler

Note that the ruler does use screen space, which means that it reduces the
size of the scrollable rectangle in the view. The size adjustments are made
automatically when you display or hide the ruler with the
protoTXView:ShowRuler and protoTXView:HideRuler methods.

Terminology 3
The word-processing view refers to paragraph settings as a ruler. Each
paragraph has a ruler, which defines its margins, line spacing, justification,
and tab settings.

There are also style runs in word-processing documents. Each style run
specifies font appearance attributes that apply to a range of data in the
document.

Using Word Processing Views 3

This section describes how to use word-processing views in your
applications. The code examples used in this section are taken from a sample
program named TXWord, which demonstrates the basic features of
protoTXView. The full source code for TXWord is available from Newton
Developer Technical Support.

C H A P T E R 3

Word Processing Views

Using Word Processing Views 3-9
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Initializing Your Word-Processing View 3
You can initialize your word-processing view in the ViewSetupFormScript
method. The TXWord implementation of this method calls the inherited
ViewSetupFormScript method and then initializes the store, as shown in
Listing 3-1.

Listing 3-1 Initializing a word-processing view

ViewSetupFormScript:
func()

begin
inherited:?ViewSetupFormScript();

// store data in a VBO, not in NewtonScript memory
:SetStore(GetDefaultStore());

// cache box top value for use in GetTextHeight method
self.ourGlobalBoxTopCoordinate := :GlobalBox().top;

constant kMaxScrollHeight := 32767;
:SetGeometry(true, :localbox().right, kMaxScrollHeight,

Relbounds(0,0,0,0));
end

The protoTXView:SetStore method, which is called in the TXWord program’s
ViewSetupFormScript method, specifies which store is used to contain the text
edited in your word-processing view. This is normally the same as your soup
entry’s store. You can (as TXWord does) call the GetDefaultStore function to
retrieve the default store and use that.

The TXWord ViewSetupFormScript method sets the scroll height to a very
large number (32767), which ensures that the user can see all of the text. Note
that this is used for a non-paged view; if you specify a paged view in your
SetGeometry call (true as the value of the first argument), you must specify
the actual size of an individual page as the scroll height value.

Although TXWord does not use margins, it still must provide a margins
rectangle frame as the last parameter in the call to SetGeometry. The call to
Relbounds returns a rectangle frame.

C H A P T E R 3

Word Processing Views

3-10 Using Word Processing Views

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Note

You can call the SetStore method of your word-processing
view only once, and you must call it while the view is being
created (before the ViewSetupDoneScript method is called). If
you do not call SetStore, your text defaults to being RAM
based. ◆

Setting Up Your Word-Processing View 3

You can initialize your word-processing view with the current document by
reading the document data from your soup after the view has been
completely set up. The TXWord program initializes its view in the
ViewSetupDoneScript method, as shown in Listing 3-2.

Listing 3-2 Setting up a word-processing view

ViewSetupDoneScript:
func()

begin
:SetupScrollers();

 :GetSoupData();
SetKeyView(self, 0);
inherited:?ViewSetupDoneScript();

end

The TXWord implementation of ViewSetupDoneScript calls the following four
methods:

■ the editor:SetupScrollers method to set up the scrollers. This method,
which you must call if you have scrollers, is shown in Listing 3-3.

■ the editor:GetSoupData method to read the document most recently
written by TXWord from the current store, and then display that
document. The GetSoupData method is described in “Reading a
Word-Processing Document From a Soup” (page 3-14).

■ the SetKeyView function to establish the word-processing view as the key
view, which means that the view will receive keystrokes from the user. For
more information about key views and the SetKeyView function, see
Chapter 4, “Keyboard Enhancements.”

C H A P T E R 3

Word Processing Views

Using Word Processing Views 3-11
Preliminary Draft.  Apple Computer, Inc. 4/21/97

■ the inherited ViewSetupDoneScript method.

Scrolling the Word-processing View 3
This section describes how to handle scrolling in your word-processing
views. You must first set up your scrollers. The TXWord program uses the
SetupScrollers method for this purpose. This method, which is shown in
Listing 3-3, is called after the editor view and scroll arrows have been created.

Listing 3-3 The SetScrollers method

SetupScrollers:
func()
begin
scroller.scrollview := editor;
scroller.viewRect := editor:GetScrollableRect();

// note: GetScrollableRect returns the scroll area in
// global coordinate values, omitting the ruler area

local visualArea := :GetScrollableRect();

scroller.viewRect := clone(:LocalBox());
scroller.viewRect.bottom:= visualArea.bottom - visualArea.top;
scroller.scrollRec := RelBounds(0,0,

scroller.viewRect.right, :GetTotalHeight());
end,

The protoTXView:ViewUpdateScrollersScript method is called when
something happens that might affect the the scroll arrows; for example, if
more text is added, which causes the maximum height or thumb position to
change. The TXWord version of this method is shown in Listing 3-4.

Listing 3-4 The TXWord ViewUpdateScrollersScript method

ViewUpdateScrollersScript:
func(updateMaxValue, scrolled)
begin
if updateMaxValue then

begin

C H A P T E R 3

Word Processing Views

3-12 Using Word Processing Views

Preliminary Draft.  Apple Computer, Inc. 4/21/97

// use editor’s GetTextHeight method to get the height
scroller.scrollRect.bottom := :GetTextHeight();
scroller.dataRect := scroller.scrollRect;
end;

if scrolled then
scroller.yPos := :GetScrollValues().y;

if call kViewIsOpenFunc with (scroller) then
scroller:AdjustArrows();

end,

The TXWord implementation of ViewUpdateScrollersScript calls a local
method, GetTextHeight, to return the actual text height in the view. Although
TXWord uses a non-paged word-processing view, the GetTextHeight method
is included to illustrate how you would implement scrolling in a non-paged
word-processing view.

You need to use a method such as GetTextHeight if you are implementing a
read-write, non-paged view.

Note

Recall that when you initialize a read-write, non-paged view,
you need to specify the text height as your view height in
your call to the SetGeometry method. ◆

When the user adds text to such a view, the new text can appear outside of
the view’s text region. To get around this, you typically create the view with
an arbitrarily large height and write a function such as GetTextHeight to
return the actual text height. The TXWord:GetTextHeight method is shown in
Listing 3-5.

Note

You do not need to be concerned with this situation if your
word-processing view is a read-only view, because the text
height never changes in such a view. ◆

The GetTextHeight method returns the actual text height in the view. This
method is not required if your word-processing view is paged, because
paged views automatically adjust their height as the user adds text.

C H A P T E R 3

Word Processing Views

Using Word Processing Views 3-13
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Listing 3-5 The TXWord GetTextHeight method

GetTextHeight:
func()
begin
local chars := :GetCountCharacters();
local maxInfo := :CharToPoint(chars);

local globalY := maxInfo.y + maxInfo.lineHeight;

// take the scroll position into consideration...
globalY := globalY + :GetScrollValues().y;
return globalY - ourGlobalBoxTopCoordinate;
end,

The GetTextHeight method uses an application variable,
ourGlobalBoxTopCoordinate, in its computation of the text height. This value
is set in the ViewSetupFormScript method.

The final scrolling method, ViewScroll2DScript, method is called when the
user taps the scroll arrows. You only need to implement this method if you
are using the protoXXXScroller methods. The TXWord version of this method
is shown in Listing 3-6.

Listing 3-6 The TXWord ViewScroll2DScript method

ViewScroll2DScript:
func(direction, extras)
begin
if direction = 'up then

:Scroll({x:0, y: - kScrollDist});
else // direction = 'down

:Scroll({x:0, y: kScrollDist });

scroller.yPos := :GetScrollValues().y;
if call kViewIsOpenFunc with (scroller) then

scroller:AdjustArrows(); // this is a protoXXXScroller method

RefreshViews();
end,

The TXWord implementation of ViewScroll2DScript scrolls the view up or
down and then calls the RefreshViews function to redraw the view.

C H A P T E R 3

Word Processing Views

3-14 Using Word Processing Views

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Note

The call to the RefreshViews function in Listing 3-6 is
required for the scroller to update. The protoTXView
automatically updates whenever it receives a scroll message.

Reading a Word-Processing Document From a Soup 3
To read a word-processing document that you have previously created in
your application, you can access the document in a soup and then call the
protoTXView:Internalize method, which replaces the view’s contents with
the document data. The TXWord program implements this in the
editor:GetSoupData method, which is shown in Listing 3-7.

Listing 3-7 Reading a document from a soup

editor:GetSoupData:
func()

begin
local soup := GetUnionSoup(kSoupName);
if soup then

begin
local query := soup:Query(nil);

// set our slot with the entry, if there
theSoupEntry := query:entry();

if theSoupEntry then
self:Internalize(theSoupEntry.EditorData);

end;
end

The TXWord program assumes that there should only be one
word-processing entry in the soup. During program debugging, the
editor:GetSoupData method verifies this by checking for duplicate entries; if
a duplicate entry is found, editor:GetSoupData generates an exception.

C H A P T E R 3

Word Processing Views

Using Word Processing Views 3-15
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Note

The TXWord model of reading a document from a soup is
not necessarily the correct approach for your application. It
works for TXWord’s relatively simple style of managing its
documents. ◆

Note that the editor:GetSoupData method stores a reference to the soup entry
in the slot editor:theSoupEntry. This slot is initialized to nil when the
TXWord program starts and is also used by the editor:PutSoupData method.

Storing Documents In a Soup 3
After the user has finished modifying a word-processing document, you
need to save it in your soup. The TXWord program does this at view closing
time, in its implementation of the ViewQuitScript method, which is shown in
Listing 3-8.

Listing 3-8 Closing the word-processing view

ViewQuitScript:
func()

begin
:SetSoupData();

inherited:?ViewQuitScript();
end

The TXWord implementation of the ViewQuitScript method calls the
editor:SetSoupData method to store the modified data and then calls the
inherited ViewQuitScript method. The editor:SetSoupData method is shown
in Listing 3-9.

Listing 3-9 Storing a word-processing document

editor:SetSoupData:
func()

begin
// only save if something changed

C H A P T E R 3

Word Processing Views

3-16 Using Word Processing Views

Preliminary Draft.  Apple Computer, Inc. 4/21/97

if not :IsModified() then
return;

local externalData := self:Externalize();

// change existing soup entry if there is one
if theSoupEntry then

begin
theSoupEntry.EditorData := externalData;
EntryChangeXmit(theSoupEntry, nil);
end;

else
begin
local soup := GetUnionSoupAlways(kSoupName);
if soup then

theSoupEntry := soup:AddToDefaultStoreXmit(
{EditorData: externalData}, nil);

else
begin
soup := GetDefaultStore():CreateSoup(kSoupName, []);
theSoupEntry := soup:AddXmit(

{EditorData: externalData}, nil);
end;

end;
end

The editor:SetSoupData method first determines if the view has been
modified by the user by calling the protoTXView:IsModified method. If not,
SetSoupData simply returns, rather than spending time saving unchanged
data.

If the view has been modified, SetSoupData calls the protoTXView:Externalize
method to convert the word-processing data in the view into a format that
can be stored in your soup. SetSoupData then updates the soup as follows:

■ If there already is a soup entry for the view, SetSoupData updates that
entry. SetSoupData knows that a soup entry already exists if theSoupEntry
slot has a value. This is the case if the GetSoupData method found a soup
entry at view setup time, as described in “Reading a Word-Processing
Document From a Soup” (page 3-14).

■ If there is not already a soup entry for the view, SetSoupData creates the
soup in the default store and adds the data to the soup.

C H A P T E R 3

Word Processing Views

Using Word Processing Views 3-17
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Handling User Interactions 3
The TXWord program allows the user to perform several different operations
by picking buttons from a button bar. The supported user actions are:

■ changing the font used in the word-processing view

■ changing the font size used in the word-processing view

■ capitalizing the selected text range

■ censoring the selected text range by replacing the text with a graphic
image

Figure 3-2 shows the TXWord button bar. For more information about button
bars, see the newtStatusBar proto in Newton Programmer’s Reference. The
remainder of this section describes the code used to implement each button
bar action in the TXWord program.

Figure 3-2 The TXWord button bar

Changing the Font 3

The TXWord program allows the user to replace the font used to display the
selected range of text. This is handled by the ButtonClickScript and
PickActionScript methods of the “Font” button displayed in the TXWord
button bar.

Listing 3-10 Changing the font in TXWord

{_proto: protoPopupButton,
text: " Font",
ButtonClickScript: func()
begin
self.font := editor:GetContinuousRun();

// display only fonts

C H A P T E R 3

Word Processing Views

3-18 Using Word Processing Views

Preliminary Draft.  Apple Computer, Inc. 4/21/97

popup := MakeFontMenu(font, nil, 'none, 'none);
inherited:?ButtonClickScript();
end,

PickActionScript: func(index)
begin
local range := editor:GetHiliteRange();
editor:ChangeRangeRuns(range,

{family: popup[index].family}, nil, true);
inherited:?PickActionScript(index);
end;

},

The ButtonClickScript for the “Font” button gets the style run for the current
selection and displays a font menu with the style run’s font as its initial
value. When the user selects a font from the menu, the PickActionScript
changes the font attribute of the currently selected text range.

Changing the Font Size 3

The TXWord program allows the user to replace the font size used to display
the selected range of text. This is handled by the ButtonClickScript and
PickActionScript methods of the “Size” button displayed in the TXWord
button bar.

Listing 3-11 Changing the font size in TXWord

{_proto: protoTextButton,
text: " Size",
ButtonClickScript: func()
begin
self.font := editor:GetContinuousRun();

// display only sizes
popup := MakeFontMenu(font, 'none, nil, 'none);
inherited:?ButtonClickScript();
end,

PickActionScript: func(index)
begin
local range := editor:GetHiliteRange();
editor:ChangeRangeRuns(range,

 {size: popup[index].size}, nil, true);

C H A P T E R 3

Word Processing Views

Using Word Processing Views 3-19
Preliminary Draft.  Apple Computer, Inc. 4/21/97

inherited:?PickActionScript(index);
end;

}

The ButtonClickScript for the “Size” button gets the style run for the current
selection and displays a font size menu with the style run’s font size as its
initial value. When the user selects a size from the menu, the
PickActionScript changes the font attribute of the currently selected text
range.

Replacing the Selected Text With a Graphic 3

The TXWord program allows the user to replace the selected text with a
shape that indicates the text is censored. The graphic used to indicate that
text is censored is stored in a shape object. The Censor method, which is
shown in Listing 3-12, is called by the ButtonClickScript of the “Censor”
button when the user taps the button.

Listing 3-12 Replacing the selcted text

Censor:
func()

begin
local graphicSpecForTXView := {

class: 'graphics,
shape: MakeShape(kJustSayNoPict)
};

local range := editor:GetHiliteRange();

editor:Replace(range, graphicSpecForTXView, true);
end,

The Censor function uses two of the protoTXView methods to replace the
selected text with a shape:

■ it calls the GetHiliteRange method to retrieve the currently selected text
range

■ it calls the Replace method to replace that range with a shape. The shape,
graphicSpecForTXView, is a graphic shape that TXWord creates from a
picture that it reads from its resources at program initialization time.

C H A P T E R 3

Word Processing Views

3-20 Using Word Processing Views

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Converting the Selected Text to Uppercase 3

The TXWord program allows the user to convert the selected text into all
uppercase letters. This is handled by the ButtonClickScript method of the
“UpperCase” button displayed in the TXWord button bar.

Listing 3-13 Converting the selcted text to uppercase

{_proto: protoTextButton,
text: "UpperCase",
ButtonClickScript: func()

begin
local range := editor:GetHiliteRange();
local theText := editor:GetRangeData(range, 'text);
local theStyles:= editor:GetRangeData(range, 'styles);
Upcase(theText);

// if we left the styles slot nil, the styles would be reset
// to match the style at the beginning of the run.

editor:Replace(range, {text: theText, styles: theStyles}, true);
// Ensure the new text is visible and selected

editor:SetHiliteRange(range, true, true);
inherited:?ButtonClickScript();
end,

}

The “UpperCase” button’s ButtonClickScript converts the text using the
following steps:

■ It retrieves the range and styles for the selected text.

■ Itapplies the Upcase function to the text range.

■ It resets the styles slot of the selected range.

■ It calls the SetHiliteRange method to ensure that the new text is visible
and selected.

Adding a Recognized Word to Your Word-Processing View 3

Although protoTXView does not handle handwriting recognition, you can
use the ViewWordScript to recognize a word and add it to your view. The
TXWord implementation of this method is shown in Listing 3-14.

C H A P T E R 3

Word Processing Views

Using Word Processing Views 3-21
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Listing 3-14 Adding a recognized word to a word-processing view

ViewWordScript:
func(unit)

begin
local words := GetWordArray(unit);
local range := editor:GetHiliteRange();

// determine if we need to add a space before or after the word
local first := range.first - 1;
local last := range.last + 1;
local totalChars := :GetCountCharacters();
local textToAdd := "";

if first >= 0 and totalChars > 0 then
if :GetRangeData({first: first, last: first + 1}, 'text)[0]

<> $ then
textToAdd := textToAdd & " "; // insert space before word

// add first (most likely) word returned by recognition
textToAdd := textToAdd & words[0];

if last < totalChars then
if :GetRangeData({first: last, last: last + 1}, 'text)[0]

<> $ then
textToAdd := textToAdd & " "; // add space after word

editor:Replace(range, {text: textToAdd}, true);

true; // Return true if input has been completely handled
end,

The TXWord implementation of ViewWordScript calls the global function
GetWordArray to recognize the input word (unit) and then adds the first word
in the returned array –the most likely match– to the word-processing view.

Note

protoTXView does not provide the same recognition hooks as
does clParagraphView. For example, the user does not get the
correction picker if he or she double-taps on a word. ◆

C H A P T E R 3

Word Processing Views

3-22 Word Processing View Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Word Processing View Reference 3

This section provides reference information for all of the data structures,
methods, and functions that you can use with word-processing views.

Common Parameter Descriptions 3
This section describes the parameter values that are used by a number of the
word-processing view methods.

The Range Frame 3

Several of the word-processing methods use a range parameter to specify a
range of characters in the view.

range A frame with two slots: 'first and 'last. This frame
defines a text range from 'first to 'last, inclusive.
Each slot is required. The value of each slot must be a
non-negative integer value.

The Graphics Specification Frame 3

Several of the word-processing methods use a graphics specification
parameter to specify a shape object to use for an operation.

graphicsSpec A frame with two slots: class 'graphics and 'shape,
which is a shape object as described in “Drawing and
Graphics” (page 13-1) in Newton Programmer’s Guide.

C H A P T E R 3

Word Processing Views

Word Processing View Reference 3-23
Preliminary Draft.  Apple Computer, Inc. 4/21/97

The Ruler Information Frame 3

Several of the word-processing methods use a ruler information parameter to
specify style information for a paragraph.

rulerInfo A frame describing the attributes of a ruler. This frame
contains the following slots:
justification Optional. One of the symbols: 'left,

'right, 'center or 'full.
indent Optional. The indentation of the first line

of the paragraph, expressed as an integer
number of pixels measured from the left
edge of the text bounds.

leftMargin Optional. The left margin of the
paragraph, expressed as an integer
number of pixels measured from the left
edge of the text bounds.

rightMargin Optional. The right margin of the
paragraph, expressed as an integer
number of pixels measured from the right
edge of the text bounds.

lineSpacing Optional. The spacing for text lines in the
paragraph, expressed as an integer
number of text lines. A value of 2
indicates double spacing.

tabs Optional. An array of tab frames, as
described in the next section.

Tab Frames 3

Each tab setting in a ruler is specified by a frame with two slots:

kind One of the symbols: 'left, 'right, 'center or
'decimalPoint.

value The tab value expressed as an integer number of pixels
measured from the left edge of the text bounds.

C H A P T E R 3

Word Processing Views

3-24 Word Processing View Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Protos 3
This section describes the slots, and functions of the protoTXView and
protoTXViewFinder word-processing protos.

protoTXView 3

This section describes the slots and methods of protoTXView.

Initialization Methods 3

This section describes the methods that you can call to set the different
storage and geometry characteristics of your word-processing views. You can
call these from your ViewSetupForm script.

SetStore 3

protoTXView:SetStore(store)

Specifies that the text in your word-processing view is to be stored as a
virtual binary object (VBO). You only need to call this method if you want
your view stored as a VBO; the default is to store the text as a RAM-based
object.

store The store object to contain the text. This is usually the
same as your soup entry’s store.

return value An error code, or nil if the operation was successful.

DISCUSSION

Storing text as a VBO allows the text to be as large as the amount of free
space on the store. Text is swapped in and out of memory as required.

IMPORTANT

You cannot change the storage-type of your text once your
ViewSetupDoneScript has executed. ◆

C H A P T E R 3

Word Processing Views

Word Processing View Reference 3-25
Preliminary Draft.  Apple Computer, Inc. 4/21/97

SetGeometry 3

protoTXView:SetGeometry(isPaged, width, height, margins)

Changes the geometrical characteristics of the view.

isPaged Specifies whether the text is laid out in many pages,
with text flowing from one page to another (with dotted
lines visible between pages), or bounded by one box.
Use true to indicate that the text is paged, or nil to
indicate that all text is contained in one box. The default
value is nil.

A page break inserted into a non-paged view has no
effect. However, the page break pasted into a paged
view does cause a page break.

width The width of the text bounds, or the page width if
isPaged is true. This value is expressed as an integer
number of pixels, and includes the left and right
margins. The default value is the width of the view (as
specified in the viewBounds rectangle).

height The height of the text bounds, or the page height if
isPaged is true. This value is expressed as an integer
number of pixels, and includes the top and bottom

C H A P T E R 3

Word Processing Views

3-26 Word Processing View Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

margins. The default value is the height of the view (as
specified in the viewBounds rectangle).

margins A rectangle that specifies the margins of the page or text
box. The rectangle is specified as a frame with four slots:
top The indent from the top edge of the view

rectangle, expessed as a number of pixels.
left The indent from the left edge of the view

rectangle, expessed as a number of pixels.
bottom The indent from the bottom edge of the

view rectangle, expessed as a number of
pixels.

right The indent from the right edge of the
view rectangle, expessed as a number of
pixels.

To specify no margins at all, use a rectangle in which all
four values are 0.

return value An error code, or nil if the operation worked.

DISCUSSION

You can call this method at any time to change the geometrical characteristics
of your word-processing view.

IMPORTANT

You cannot change the isPaged characteristic once the
ViewSetupDoneScript has executed. If you attempt to change
isPaged after that time, the new setting is ignored. ◆

Methods for Getting Information 3

This section describes the methods you can use to retrieve information about
the content of a word-processing view.

C H A P T E R 3

Word Processing Views

Word Processing View Reference 3-27
Preliminary Draft.  Apple Computer, Inc. 4/21/97

GetRangeData 3

protoTXView:GetRangeData(range, which)

Returns a certain kind of data (text or styles) for the specified range in a
word-processing view.

range A frame with two slots: 'first and 'last. This frame
defines a text range from 'first to 'last, inclusive.
Each slot is required. The value of each slot must be a
positive integer value.

which Specifies the kind of data to retrieve. You can specify
one of the following values:
Symbol Returned data

'text A string allocated from the NewtonScript
heap.

'styles An array with two entries for each style
run in the range. The first entry specifies
the number of characters, and the second
is either a font specification frame or a
graphics specifiation frame. The run
length is always 1 for graphics
specification frames.

For a description of the font specification
frame, see the section “Font Frame” (8-18)
in Newton Programmer’s Guide. See “The
Graphics Specification Frame” (page 3-22)
for a description of the graphics
specification frame.

'rulers An array with two entries for each ruler.
The first entry specifies the number of
characters for the ruler, and the second
contains a ruler information frame.

See “The Ruler Information Frame”

C H A P T E R 3

Word Processing Views

3-28 Word Processing View Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

(page 3-23) for a description of the ruler
information frame.

'all Returns all information in a frame that
contains three slots: 'text, 'styles, and
'rulers.

return value A frame or array containing the requested data.

DISCUSSION

The GetRangeData method returns data for a range of text within a
word-processing view.

GetCountCharacters 3

protoTXView:GetCountCharacters()

return value The integer number of characters in the specified
word-processing view.

DISCUSSION

Returns the number of characters in a word-processing view.

This cannot be called before ViewSetupDoneScript gets called, since the
document won't have been initialized yet.

FindString 3

protoTXView:FindString(str, startOffset, options)

Searches for matching text in a word-processing view.

str The string to be searched.

startOffset The offset at which the search should start.

options Must be nil. Currently the search is not case sensitive.

return value The offset of the matching string in the view. If no
match is found, FindString returns nil.

C H A P T E R 3

Word Processing Views

Word Processing View Reference 3-29
Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

The FindString method searches in a word-processing view for a sequence of
characters that matches str. The search begins at startOffset from the
beginning of the view and continues until a match is made or the end of the
text is reached.

Note that FindString does not offer wrap-around searching of the text in
your view.

GetWordRange 3

protoTXView:GetWordRange(offset)

Finds the first and last characters of a word.

offset The offset from the beginning of the text in the
word-processing view.

return value A range frame that specifies the starting and ending
offsets of the word that follows the specified offset in a
word-processing view. The GetWordRange method
returns a range frame, as described in “The Range
Frame” (page 3-22). The GetWordRange method returns
nil if it does not find a word after offset.

DISCUSSION

The GetWordRange method searches forward in the text to discover the first
character and last character of the word that follows offset. This method
considers a word to consist of alphanumeric characters delimited by white
space (tabs, returns, spaces, and graphic runs). Hyphenated words are
considered single words.

CharToPoint 3

protoTXView:CharToPoint(offset)

Returns a frame that specifies the coordinates of a character in a
word-processing view.

offset The offset from the beginning of the text in the
word-processing view. This offset specifies the caret
location: a value of 0 indicates before the first character,

C H A P T E R 3

Word Processing Views

3-30 Word Processing View Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

and a value of 1 indicates between the first and second
characters.

return value The CharToPoint method returns a frame with three slots:
x The horizontal coordinate of the top-left

corner of the rectangle enclosing the
character at offset.

y The vertical coordinate of the top-left
corner of the rectangle enclosing the
character at offset.

lineHeight The line height of the line that contains
the character.

DISCUSSION

The value of each of the slots in the returned frame is in global coordinates,
relative to the top-left of the screen. This means that the y-value can be
negative if the view has been scrolled down.

PointToChar 3

protoTXView:PointToChar(point)

Returns a range frame for the character at the specified point.

point A frame containing two slots:
x The horizontal coordinate, as a global

coordinate value, relative to the top-left of
the screen.

y The vertical coordinate, as a global
coordinate value, relative to the top-left of
the screen.

return value The PointToChar method returns a range frame for the
character at the specified point. Range frames are
described in “The Range Frame” (page 3-22).

DISCUSSION

The values of the slots in the returned range frame are as follows:

C H A P T E R 3

Word Processing Views

Word Processing View Reference 3-31
Preliminary Draft.  Apple Computer, Inc. 4/21/97

■ If point is inside of a text run, the 'first and 'last slots have the same
value.

■ If point is inside of a graphics run, the value of the 'last slot is 1 greater
than the value of the 'first slot.

GetLineRange 3

protoTXView:GetLineRange(offset)

Returns a range frame for the text line in the view that contains the specified
offset.

offset The offset from the beginning of the text in the
word-processing view. This offset specifies the caret
location: a value of 0 indicates before the first character,
and a value of 1 indicates between the first and second
characters.

return value A range frame corresponding to the text line that
contains the specified offset.

DISCUSSION

The returned range includes the trailing carriage return if it exists. If the
offset is on a carriage return, the range returned is the one preceding the
carriage return and including it. If the offset is after a carriage return, the next
run is returned. Page break characters are treated the same as carriage
returns.

Editing Functions and Methods 3

This section describes the methods that you can use to perform editing
operations in your word-processing views. Many of the editing operations
can be undone by the user without any coding effort on your part.

Note that when an editing operation crosses paragraph boundaries, the ruler
of the first paragraph is used.

C H A P T E R 3

Word Processing Views

3-32 Word Processing View Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Cut 3

protoTXView:Cut()

Removes the highlighted range and copies it to the clipboard.

return value An error code, or nil if the operation worked.

Copy 3

protoTXView:Copy()

Copies the highlighted range to the clipboard.

return value An error code, or nil if the operation worked.

Paste 3

protoTXView:Paste()

Replaces the highlighted range with the clipboard content.

return value An error code, or nil if the operation worked.

Clear 3

protoTXView:Clear()

Removes the highlighted range. The clipboard is not changed.

return value An error code, or nil if the operation worked.

ChangeRangeRuns 3

protoTXView:ChangeRangeRuns(range, fontSpec, toggleFace, undoable)

Changes the font attributes for a range of text in a word-processing view.

range A range frame defining the text range that you want to
change. See “The Range Frame” (page 3-22).

fontSpec A font specification frame that can contain nil slots.
Any non-nil slots in this frame indicate new text
attributes for the range. Use nil slots to indicate that the
corresponding attribute is not to change. For a
description of the font specification frame, see the

C H A P T E R 3

Word Processing Views

Word Processing View Reference 3-33
Preliminary Draft.  Apple Computer, Inc. 4/21/97

section “Font Frame” (8-18) in Newton Programmer’s
Guide.

toggleFace A Boolean value that specifies the font face attribute to
use for all text in the range.

If toggleFace is nil, the font face is changed to the value
of the face slot in fontSpec. If that value is nil, the font
face is not change.

If toggleFace is non-nil, the font face is toggled: if one of
the font face values specified in the face slot in fontSpec
is used across the entire range, ChangeRangeRuns turns off
that attribute. Otherwise, that attribute is applied to all
of the text in range.

undoable If the value of this slot is non-nil, the operation can be
undone. If the value of this slot is nil, the operation
cannot be undone.

return value An error code, or nil if the operation worked.

ChangeRangeRulers 3

protoTXView:ChangeRangeRulers(range, ruler, undoable)

Changes the attributes of the rulers in a range of text.

range The rulers in this range are changed. Note that the range
is grown to enclose entire paragraphs.

ruler A ruler information frame. Any non-nil slots in this
frame indicate new ruler attributes for the range. Use nil
slots to indicate that the corresponding attribute is not
to change. See “The Ruler Information Frame”
(page 3-23).

undoable If non-nil, the operation is undoable.

return value An error code, or nil if the operation worked.

C H A P T E R 3

Word Processing Views

3-34 Word Processing View Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Replace 3

protoTXView:Replace(range, data, undoable)

Replaces the data inside of the specified range with the specified data. You
can replace text and/or graphics with this method.

range A range frame defining the text range that you want to
change. See “The Range Frame” (page 3-22).

data A frame describing the new data. This can be a graphics
specification frame, as described in “The Graphics
Specification Frame” (page 3-22). Or data can be a frame
with the following slots:
text If this slot is nil, style runs are replaced,

but the text remains the same. If non-nil,
this is the new text string.

styles If this slot is nil, the new text uses the
style attributes at the start of the range.

If non-nil, this is an array with two
entries for each style run in the range. The
first entry specifies the number of
characters, and the second is either a font
specification frame or a graphics
specification frame. The run length is
always 1 for graphics specification objects.

For a description of the font specification
frame, see the section “Font Frame” (8-18)
in Newton Programmer’s Guide. See “The
Graphics Specification Frame” (page 3-22)
for a description of the graphics
specification frame.

undoable If non-nil, the operation is undoable.

return value An error code, or nil if the operation worked.

C H A P T E R 3

Word Processing Views

Word Processing View Reference 3-35
Preliminary Draft.  Apple Computer, Inc. 4/21/97

EXAMPLE

The following call to the Replace method changes the first ten characters to
the word “any” using the system font, bold face, point size 9:

myTxView:Replace({first:0, last:10},
{text:"any", styles: [3, tsSystem+tsSize(10)+tsBold]});

The following call to the Replace method changes the first ten characters of
the range to a rounded rectangle:

myShape:= makeroundrect(0, 0, 50, 50, 16);
myTxView:Replace({first:0, last:10},

{class: 'graphics, shape: myShape})

ReplaceAll 3

protoTXView:ReplaceAll(str, startOffset, options, data)

Searches the text in the view, starting at the specified offset, and replaces all
occurrences of a string with other data.

str The string to be replaced

startOffset The starting offset of the search in the text, specified as a
number of characters.

options Must be nil.

data A frame describing the new data. This can be a graphics
specification frame, as described in “The Graphics
Specification Frame” (page 3-22). Or data can be a frame
with the following slots:
text If this slot is nil, style runs are replaced,

but the text remains the same. If non-nil,
this is the new text.

styles If this slot is nil, the new text uses the
style attributes at the start of the range.

If non-nil, this is an array with two
entries for each style run in the range. The
first entry specifies the number of
characters, and the second is either a font
specification frame or a graphics

C H A P T E R 3

Word Processing Views

3-36 Word Processing View Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

specification frame. The run length is
always 1 for graphics specification objects.

For a description of the font specification
frame, see the section “Font Frame” (8-18)
in Newton Programmer’s Guide. See “The
Graphics Specification Frame” (page 3-22)
for a description of the graphics
specification frame.

return value The number of replacements made by ReplaceAll.

WARNING

This operation can not be undone. ◆

Storage Methods 3

This section describes the methods that you can use to save and retrieve
word-processing documents. What you normally do with these documents is
to put the protoTXView data frame in a soup entry slot and then use the
standard soup methods to store or modify it.

Externalize 3

protoTXView:Externalize()

Creates an object that contains all of the data for the document in the view,
including the document’s text, style runs, and rulers.

return value A reference to the object that was created for the
document. The object is allocated from the
NewtonScript heap.

If you used SetStore to store your document in a virtual
binary object (VBO), your document is referenced from
this frame.

C H A P T E R 3

Word Processing Views

Word Processing View Reference 3-37
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Note

The object referenced by this method is intended for use as a
black box, which means that you must use it for only two
purposes: to save it into a soup or as input to the
Internalize method. ◆

Internalize 3

protoTXView:Internalize(object)

Replaces the current content of the view with the data in object.

object A reference to an object, as returned by the Externalize
method.

return value An error code, or nil if the operation worked.

DISCUSSION

The Internalize method replaces the contents of a protoTXView view with the
data retrieved by a previous call to the Externalize method and resets the
highlight range to (0,0).

IsModified 3

protoTXView:IsModified()

Determines if the view has changed since the last call to either the
Externalize or Internalize methods.

return value A non-nil value if the contents of the view have
changed since the last call to Externalize or
Internalize. Returns nil if the contents have not been
changed.

Note

For improved performance, you should only call the
Externalize method when IsModified returns true. ◆

C H A P T E R 3

Word Processing Views

3-38 Word Processing View Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Scrolling Methods 3

This section describes the methods that you can use for scrolling your
word-processing views.

Note

The protoTXView has built-in scrolling that happens
automatically when the user is entering text with the
keyboard or pen. You usually only have to call the methods
described in this section if you have attached scroller protos
to the view that encloses your protoTXView. ◆

Scroll 3

protoTXView:Scroll(scrollValues)

Scrolls the content of the view vertically and/or horizontally, as defined in
scrollValues.

scrollValues A frame with x and y slots. The content is scrolled by x
pixels horizontally and y pixels vertically.

return value An error code, or nil if the operation worked.

DISCUSSION

For example, to scroll from page 1 to page 2, use the following:

Scroll({x:0, y:pageHt});

GetScrollValues 3

protoTXView:GetScrollValues()

Returns the current scroll values.

return value A frame with x and y slots containing the current scroll
values, expressed in pixels.

DISCUSSION

You can call this method and then use the returned values to update your
scrollers.

C H A P T E R 3

Word Processing Views

Word Processing View Reference 3-39
Preliminary Draft.  Apple Computer, Inc. 4/21/97

GetTotalHeight 3

protoTXView:GetTotalHeight()

Determines the current text height of the view.

return value The current total text height of the view.

DISCUSSION

You can use this value to set the maximum value of a vertical scroller.

If the view is non-paged, GetTotalHeight returns the height of the entire
view, as set with the SetGeometry method. If the view is paged,
GetTotalHeight returns the height of the page (as specified in SetGeometry)
multiplied by the total number of pages.

GetTotalWidth 3

protoTXView:GetTotalWidth()

Returns the current text width of the view.

return value The current total text width of the view.

DISCUSSION

You can use this value to set the maximum value of a horizontal scroller.

The GetTotalWidth method returns the width of the view, as set with the
SetGeometry method.

GetScrollableRect 3

protoTXView:GetScrollableRect()

Returns the scrollable area (the visible region) of the view.

return value A rectangle frame describing the global coordinates of
the rectangle in which text is displayed.

C H A P T E R 3

Word Processing Views

3-40 Word Processing View Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

The rectangle returned by GetScrollableRect is normally equal to the view
bounds minus the ruler area. The returned frame has four slots: top, left,
bottom, and right.

ViewUpdateScrollersScript 3

protoTXView:ViewUpdateScrollersScript(updateMaxVal, scrolled)

Is called to notify you that the scrollers need to be updated.

updateMaxVal A Boolean value indicating whether you need to update
the maximum value of the vertical scroller.

scrolled A Boolean value indicating whether you need to update
the scroller (of both the horizontal and vertical scrollers).

return value Not used.

The ViewUpdateScrollersScript method is called when something happens
that might affect the the scroll arrows; for example, if more text is added,
which causes the maximum height or thumb position to change.

Highlighting Methods 3

This section describes the methods that you can use to work with the
currently highlighted (selected) range of text in your word-processing view.

Note that protoTXView does not support discontinous highlights.

If there is currently an insertion point, the highlight range has a length of 0.

GetHiliteRange 3

protoTXView:GetHiliteRange()

Returns the current highlight range.

return value A range frame describing the current highlight range.
Range frames are described in “The Range Frame”
(page 3-22).

C H A P T E R 3

Word Processing Views

Word Processing View Reference 3-41
Preliminary Draft.  Apple Computer, Inc. 4/21/97

SetHiliteRange 3

protoTXView:SetHiliteRange(newRange, showHilite, setKeyView)

Changes the current highlight range.

newRange A range frame that specifies the new highlight range.
Range frames are described in “The Range Frame”
(page 3-22).

showHilite A Boolean value. If this is true, the content of the view
is scrolled as necessary to display the new range. If the
range is larger than the screen, the start of the range is
displayed.

setKeyView A Boolean value. If this is true, the view becomes the
current key view, which activates the view for keyboard
input. If this is nil and there already is a key view, the
highight range is shown as an inactive selection, which
has a different on-screen appearance than a selection in
the key view.

return value An error code, or nil if the operation worked.

GetContinuousRun 3

protoTXView:GetContinuousRun()

Determines the style run for the currently highlighted range.

return value A frame that specifies the style run containing the
current highlight range.

DISCUSSION

If the current highlight range contains only one graphics object,
GetContinuousRun returns a graphics specification frame, as described in “The
Graphics Specification Frame” (page 3-22) .

Otherwise, GetContinuousRun returns a font specification frame, as described
in the section “Font Frame” (8-18) in Newton Programmer’s Guide. Any
non-nil values in the font specification frame indicate values that are
continous for the highlight range.

C H A P T E R 3

Word Processing Views

3-42 Word Processing View Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Note

You can use this method to check the appropriate items in
the style menu(s). ◆

Ruler Methods 3

This section describes the methods you can use to work with the ruler user
interface that is built into protoTXView. The ruler is shown in Figure 3-1
(page 3-8).

Note

The ruler occupies screen space, which means that the text
view rectangle is smaller when the ruler is displayed. This
causes the GetScrollableRect method to return different
values when the ruler is hidden than it does when the ruler
is displayed. ◆

ShowRuler 3

protoTXView:ShowRuler(rulerSettings)

Shows the ruler if it is not currently shown. The ruler is hidden by default.

rulerSettings A frame with one slot, type. The value of this slot can be
either metric or inches. If this parameter is nil, inches is
used.

return value An error code, or nil if the operation worked.

HideRuler 3

protoTXView:HideRuler()

Hides the ruler if it is currently shown.

return value An error code, or nil if the operation worked.

C H A P T E R 3

Word Processing Views

Word Processing View Reference 3-43
Preliminary Draft.  Apple Computer, Inc. 4/21/97

IsRulerShown 3

protoTXView:IsRulerShown()

Determines if the ruler is currently shown or hidden.

return value Returns a non-nil value if the ruler is currently visible
and nil if the ruler is currently hidden.

UpdateRulerInfo 3

protoTXView:UpdateRulerInfo(rulerSettings)

Changes the ruler display settings and updates the ruler display.

rulerSettings A frame with one slot, type. The value of this slot can
be one of the following symbols: metric or inches.

return value An error code, or nil if the operation worked.

Page-Handling Methods 3

This section describes the methods you can use to work with pages in your
word-processing view.

GetCountPages 3

protoTXView:GetCountPages()

Determines the number of pages in the view.

return value The number of pages. GetCountPages returns 0 if the
view is not using a paged layout.

InsertPageBreak 3

protoTXView:InsertPageBreak(range)

Replaces the text inside of the specified range with a page break.

range A range frame, as described in “The Range Frame”
(page 3-22).

return value An error code, or nil if the operation worked.

C H A P T E R 3

Word Processing Views

3-44 Word Processing View Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

The page break is a character with character code $\u000A. This character can
be copied, pasted, and searched for (with the FindString method).

Printing Methods 3

This section describes the SetDrawOrigin method, which you can use to
reconfigure your view for printing.

SetDrawOrigin 3

protoTXView:SetDrawOrigin(origin)

Reconfigures a view for printing.

origin A point frame with the following two slots:
x The horizontal margin, in pixels.
y The vertical margin, in pixels.

return value An error code, or nil if the operation worked.

DISCUSSION

For paged layouts, the margins are used for each page. The default margin is
(0, 0).

Note

You can call SetGeometry to reconfigure your view for
printing; however, doing so changes your margin settings. If
you use SetDrawOrigin, your margin settings are not affected.
◆

For example, to print the page number n for a view with page height h
(including margins) in your PrintNextPageScript, you can call SetDrawOrigin
as follows and then draw the view:

SetDrawOrigin({x:0, y:n*h})

C H A P T E R 3

Word Processing Views

Word Processing View Reference 3-45
Preliminary Draft.  Apple Computer, Inc. 4/21/97

protoTXViewFinder 3

This section describes the methods of protoTXViewFinder. You can use the
protoTXViewFinder to search a protoTXView document in a soup without
incurring the overhead of creating a word-processing view. This proto allows
you to search the data returned by the Externalize method of protoTXView.

FindString 3

protoTXViewFinder:FindString(object, str, startOffset, options)

Searches for matching text in the data object returned by a call to the
protoTXView:Externalize method.

object A data object returned from the Externalize method.

str The string to find.

startOffset The offset at which the search should start, expressed as
a number of characters from the start of the data.

options Must be nil.

return value The offset of the matching string in the object, or nil if
no match is found.

DISCUSSION

The FindString method searches in a word-processing data object for a
sequence of characters that matches str. The search is not case sensitive. The
search begins at startOffset from the beginning of the object and continues
until a match is made or the end of the text is reached.

The FindString method returns the offset of the matching string in the view.
If no match is found, FindString returns nil.

Note

This method works the same as the protoTXView:FindString
method, except that the protoTXViewFinder version has an
additional parameter: object. ◆

C H A P T E R 3

Word Processing Views

3-46 Word Processing View Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

GetCountCharacters 3

protoTXViewFinder:GetCountCharacters()

Determines the number of characters in the view object.

return value The total number of characters.

IMPORTANT

You must call the protoTXViewFinder:FindString method to
select a range of text in the data object before calling
protoTXViewFinder:GetCountCharacters. ◆

GetRangeText 3

protoTXViewFinder:GetRangeText(range)

Creates and returns a string that contains the characters in the specified range
in the data object.

range A range frame, as described in “The Range Frame”
(page 3-22).

return value A string containing the characters in range.

IMPORTANT

You must call the protoTXViewFinder:FindString method to
select a range of text in the data object before calling
protoTXViewFinder:GetRangeText. ◆

C H A P T E R 3

Word Processing Views

Word Processing View Reference 3-47
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Summary of Word Processing Views 3

Data Structures 3

Ruler Information Frame 3

{
justification: int, // 'left, 'right, 'center, or 'full
indent: int, // first line indentation in pixels
leftMargin: int, // left margin in pixels
rightMargin: int, // right margin in pixels
lineSpacing: int, // paragraph line spacing, in lines
tabs: [t1, t2, ... tN] // array of tab frames
}

Tab Frame 3

{
kind: int, // 'left, 'right, 'center, or 'decimalPoint
value: int, // number of pixels from left edge
}

protoTXView 3

{

// tells protoTXView to store view as VBO
SetStore: func(store),

// changes view geometry
SetGeometry: func(isPaged, width, height, margins),

// returns data for specified range in view
GetRangeData: func(range, which),

// retuyrns the number of chars in the view

C H A P T E R 3

Word Processing Views

3-48 Word Processing View Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

GetCountCharacters:func(),

// searches for matching text in a view
FindString: func(str, startOffset, options),

// finds first and last characters of a word
GetWordRange: func(offset),

// returns coordinates of a character
CharToPoint: func(offset),

// returns the character at a poing
PointToChar: func(point),

// returns range spec for a text line
GetLineRange: func(offset),

// cuts selection to clipboard
Cut: func(),

// copies selection to clipboard
Copy: func(),

// replaces selection with clipboard contents
Paste: func(),

// removes selection from view
Clear: func(),

// changes font attributes for a range
ChangeRangeRuns: func(range, fontSpec, toggleFace, undoable),

// changes ruler attributes for a range
ChangeRangeRulers: func(range, ruler, undoable),

// replaces text in range with different data
Replace: func(range, data, undoable),

// replaces all occurrences in a view
ReplaceAll: func(str, startOffset, options, data),

// creates a VBO for the data in view
Externalize: func(),

// replaces view contents with data from VBO
Internalize: func(object),

// determines if view has changed
IsModified: func(object),

C H A P T E R 3

Word Processing Views

Word Processing View Reference 3-49
Preliminary Draft.  Apple Computer, Inc. 4/21/97

// scrolls the view horizontally or vertically
Scroll: func(scrollValues),

// returns current scroll values
GetScrollValues: func(),

// determines current text height of view
GetTotalHeight: func(),

// determines current text width of view
GetTotalWidth: func(),

// determines scrollable area of view
GetScrollableRect: func(),

// notifies you that scrollers need updating
ViewUpdateScrollersScript:

func(updateMaxVal, scrolled),

// returns current highlight range
GetHiliteRange: func(),

// sets the current highlight range
SetHiliteRange: func(newRange, showHilite, setKeyView),

// gets style run for current highlight range
GetContinuousRun: func(),

// displays the ruler
ShowRuler: func(rulerSettings),

// hides the ruler
HideRuler: func(),

// determines if ruler is currently shown
IsRulerShown: func(),

// changes ruler display settings & redisplays it
UpdateRulerInfo: func(rulerSettings),

// returns number of pages in view
GetCountPages: func(),

// replaces text range with a page break
InsertPageBreak: func(range),

// reconfigures view for printing
SetDrawOrigin: func(origin)
}

C H A P T E R 3

Word Processing Views

3-50 Word Processing View Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

protoTXViewFinder 3

{

// finds a string in a VBO
FindString: func(object, str, startOffset, options),

// returns the number of characters in a VBO
GetCountCharacters:func(),

// returns characters for a text range in a VBO
GetRangeText: func(range)
}

About Keyboard Enhancements 4-1
Preliminary Draft.  Apple Computer, Inc. 4/21/97

C H A P T E R 4

Keyboard Enhancements 4

This chapter describes the expanded toolbox support that is provided in the
Newton 2.1 Operating System (OS). This chapter provides you with
information about the new software facilities for defining, processing, and
displaying keyboard commands and shortcuts, including the following:

■ command keys

■ keyboard-based selection of default buttons

■ keyboard-based selection and navigation of text

■ keyboard-based selection and navigation of menu items

■ a context-sensitive popup slip that lists all available key commands

The features described in this chapter apply to all forthcoming
Newton-based devices.

About Keyboard Enhancements 4

This section provides general information about the keyboard enhancements
provided by the Newton 2.1 OS.

Figure 4-0
Listing 4-0
Table 4-0

C H A P T E R 4

Keyboard Enhancements

4-2 About Keyboard Enhancements

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Terminology 4
The following terms are used to describe keys and keyboard actions in this
chapter:

■ Modifier keys are keys that affect the functioning of the alphanumeric
keys. The modifier keys are the Shift, Command, Control, Option, and
Caps Lock keys.

■ The key-view is the view that receives user key strokes. You can get the
current key-view by calling the global function GetKeyView(). The
key-view is the view that owns the caret.

■ Command keys associate a message (an action) with a key combination.
The key combination consists of a character typed on the keyboard in
combination with some number of modifier keys.

■ Keystroke events are events generated by the system when the user
interacts with a keyboard. Keystroke events include the key-up,
key-down, and key-repeat events.

■ Keystrings are groups of individual key presses that the system has
collected together for batch processing.

About Keystroke Handling 4
This section provides general information about how keystrokes are handled
by the system software and how your application can intercept keystrokes,
including the following techniques:

■ When you need to apply custom handling to keyboard events, you can
intercept those events, including the key-down, key-up, and key-repeat
events.

■ Sometimes the system groups multiple keystrokes together into keystrings
to improve performance. You can also intercept these strings, which are
used to improve user response time. Note that rapid successions of
keystrokes in all views are grouped together into strings unless you set the
vSingleKeystrokes text flag in the view.

For example, if the user quickly types the word “something” into a long
paragraph view, each change to the view’s contents results in an insertion

C H A P T E R 4

Keyboard Enhancements

About Keyboard Enhancements 4-3
Preliminary Draft.  Apple Computer, Inc. 4/21/97

and redisplay. Grouping the keys into a single insertion and redisplay
operation produces a much faster response than responding individually
to the entry of each character.

■ You can define keyboard commands (command keys) that the system will
match and execute where appropriate.

Keystroke Event Sequencing 4

This section describes the sequence of events that is generated when the user
presses, holds down, and then releases a key on the keyboard.

Key-down Events 4

The following list describes the processing sequence when the user presses
down on a keyboard key and a key-down event is generated:

1. If the vSingleKeystrokes text flag is set in the key-view, the view
system looks for a ViewKeyDownScript method in the key-view (proto
inheritance only) and calls it. Note that the ViewKeyDownScript method
is also called when there are no other pending, unprocessed keystrokes.

2. If the ViewKeyDownScript method returns a non-nil value, handling
for the key-down event is complete.

3. Otherwise, the system checks for a command key. This is described in
detail in “Handling Command Keys” (page 4-24).

4. If the key is not a command key, the default view class handling occurs. If
the key-view is a clEditView, a new paragraph is created at the caret
location. If the key-view is a clParagraphView, the default handling is
to insert the appropriate character at the caret, unless the key is a
backspace or arrow key, in which case the expected action occurs. Note
that if the user is typing in an existing paragraph in an edit view, the
paragraph receives the key strokes.

Key-repeat Events 4

The following list describes the processing sequence when the user holds
down a keyboard key and key-repeat events are generated:

1. After a brief delay, the system starts issuing key-repeat events.

C H A P T E R 4

Keyboard Enhancements

4-4 About Keyboard Enhancements

Preliminary Draft.  Apple Computer, Inc. 4/21/97

2. For each key-repeat event, if vSingleKeystrokes is set in the key-view,
the system calls ViewKeyRepeatScript (proto inheritance only) is
called.

3. If the view does not have a ViewKeyRepeatScript, the system calls
ViewKeyDownScript instead.

4. If this method returns non-nil, the repeated keystroke is considered to
have been handled.

5. Otherwise, the system checks for a command key , as described later in
this section. Commands can specify whether or not they are executed with
repeated keys.

6. If the key is not a command key, the default view class handling occurs.

Key-release Events 4

The following list describes the processing sequence when the user releases a
keyboard key and a key-up event is generated:

1. If vSingleKeystrokes is set in the key-view, the view system the
ViewKeyUpScript (proto inheritance only) is called.

2. If the ViewKeyUpScript returns a non-nil value, the key-up event
handling is complete.

3. No command check occurs with key-up events.

4. Otherwise, the default view class handling occurs. Ordinarily, this is
nothing at all — all characters are inserted at key-down time, and arrows
and tabs are handled then as well. The exception is the backspace key
when the last paragraph of a paragraph has been deleted: the default
key-up handler for a clParagraphView will remove the view from its
parent if that view is inside a clEditView.

Typing Without a Caret 4

The key-view must be established before a keystroke is posted. This means
that when the user types and there is not an active caret (the key-view is
nil), the system has to set the key-view. However, different actions need to
be taken, depending on whether the keystroke is a command key or an
insertable character key.

C H A P T E R 4

Keyboard Enhancements

About Keyboard Enhancements 4-5
Preliminary Draft.  Apple Computer, Inc. 4/21/97

When a key is pressed and the key-view is nil, the system looks for the
frontmost view that can handle it. This view may vary, depending on
whether or not the key pressed is a command key.

About Command Key Handling 4
Each view in your application has a set of key commands associated with it.
This section describes how key commands are defined and associated with
each view.

To define a key command for one of your views, you need to define a
keyCommand frame, as described in “The Command-Key Mapping Frame”
(page 4-31).

You specify the method associated with a command key in the keyMessage
slot of the keyCommand frame. The method need not be implemented in the
same view as the command key.

How Command Keys Are Found 4

The system software searches for command keys when the user presses one
of the following keys:

■ a function key

■ the escape key

■ any key pressed while the command key is held down

However, it is also possible to force the system to search for key commands
with every keystroke, regardless of whether the command key is down. To
do this, set the text flag vAlwaysTryKeyCommands in the key-view.

The following list describes how the system searches for a keyCommand
frame when the user enters a potential command key:

1. The command search starts at the view that owns the caret.

2. The system looks through the key commands registered in the current
view for a keyCommand that matches the pressed key.

3. If the system finds a match, the search is complete.

C H A P T E R 4

Keyboard Enhancements

4-6 About Keyboard Enhancements

Preliminary Draft.  Apple Computer, Inc. 4/21/97

4. Otherwise, the system looks for a slot named _nextKeyView in the
current view. This slot contains a reference to another view. If the
_nextKeyView slot is present, its contents are used as the next view in
which to search.

5. If the _nextKeyView slot is not found, the system moves up to the
current view’s parent and uses that as the next view to search. This
continues until the command is found or the root view has been searched.

The search for a command key is analagous to the parent inheritance chain.
You can link a slip to your base view, rather than its parent, which is
normally the root view. This allows a key command defined in your base
view to be available in the slip.

Key commands can be global (available regardless of the context), specific to
a certain application, or specific to a slip within an application. Some
commands may even be specific to a certain input field of a certain slip. In
any case, each key command is associated with a certain view. Table 4-1
shows how commands are associated with views.

About Displaying Command-Key Combinations in Menus 4

To display a command-key combination for an item in a popup menu, you
must define a keyMessage frame for the item.

For example, you can define a popup menu without command-key
equivalents by passing an array to the PopupMenu view method. The
following array creates a menu with three items:

[

Table 4-1 Command definition views

Command Type Associated view

Global commands Root view

Application commands Application’s base view

Slip commands Slip’s base view

Field commands Field’s view

C H A P T E R 4

Keyboard Enhancements

About Keyboard Enhancements 4-7
Preliminary Draft.  Apple Computer, Inc. 4/21/97

"one",
{icon: i, item: "two"},
{icon: ii, mark: $-, item: "three"}

]

The second item in the above menu contains an icon and the third item
contains an icon and a mark.

To create the above menu with command-key combinations, you specify
keyMessage slots in the item frames. When the menu is displayed, the
system software searches for a matching command key and then uses the
name, character, and modifiers defined in the found keyCommand frame. For
example, the menu could be defined with the following array:

[
"one",
{keyMessage: _DoSomething},
{keyMessage: _AnotherThing}

]

The names for the second and third items in the menu array above are found
in the corresponding keyCommand frames.

Note

To find a keyCommand frame that matches a menu item, the
system looks for a keyCommand frame whose keyMessage
slot has the same value as the keyMessage slot in the menu
item frame. ◆

If you want to display a name in the menu that is not the same as the name
specified in the keyCommand frame, you can use a keyMessage slot and an
item slot in the item frame. In this case, the item name is used instead of the
name in the matching keyCommand frame. For example:

{keyMessage: _DoSomething, item: “Something”},

In the above example, the name “Something” is displayed in the menu.

Note

An item defined with a keyMessage slot can also have
icon and mark slots.

C H A P T E R 4

Keyboard Enhancements

4-8 About Keyboard Enhancements

Preliminary Draft.  Apple Computer, Inc. 4/21/97

About Keyboard Support in Pickers 4
In most Newton applications, when the user selects an item in a picker, the
picker’s PickActionScript is called, and when the user taps outside of
the picker, the picker’s PickCancelledScript is called. When you have
key commands defined in a picker view, this changes.

In the Newton 2.1 OS, when the user selects an item in a picker, the system
first determines if the item has a key-command associated with it. If so, the
method associated with that key-command (its keyMessage) is called
instead of the PickActionScript.

You can override this by adding the alwaysCallPickActionScript flag
to your picker. When this flag is on (set to true), the system software always
calls the PickActionScript, regardless of whether or not there’s a
key-command for the item. If the alwaysCallPickActionScript flag is
off (set to nil), the system software calls the key-command method for the
item if there is one, and calls the PickActionScript method for the item if
there is not a key-command associated with it.

WARNING

You must always set the alwaysCallPickActionScript
flag to true in the protoLabelPicker and
protoLabelInputLine protos; otherwise, these protos do
not function properly. Note that you can still call the
key-command method for an item in one of these pickers, as
shown in “Calling a Key-Command Method From a Picker
Script” (page 4-8). ◆

Calling a Key-Command Method From a Picker Script 4

As described in “About Keyboard Support in Pickers” (page 4-8), your
key-command methods can be automatically called when a user selects an
item in a picker. This happens when the alwaysCallPickActionScript
flag is set to nil in a picker.

There are two picker protos that do not work properly when the
alwaysCallPickActionScript flag is set to nil: protoLabelPicker
and protoLabelInputLine. You must set the
alwaysCallPickActionScript flag to true in these protos.

C H A P T E R 4

Keyboard Enhancements

About Keyboard Enhancements 4-9
Preliminary Draft.  Apple Computer, Inc. 4/21/97

If you want to call a key-command method when the user selects an item in a
protoLabelInputLine or protoLabelPicker, you need to call the
key-command method from the PickActionScript for that proto.

Listing 4-1 shows an example of calling a key-command method from a
picker. In this sample code, the method is called from the
labelActionScript, which is called by the proto’s pickActionScript.

Listing 4-1 Calling a key-command method from a picker

labelActionScript: func(cmd)
begin
local item := labelCommands[cmd];
if item.keyMessage then

SendKeyMessage(self, item.keyMessage);
else

// do normal item processing here
end;

Keyboard Enhancements User Interface 4
This section describes the user interface characteristics of the keyboard
enhancements, including specific command-key combinations used for
various built-in applications.

General Usage 4

The following key combinations are applicable to general usage:

■ Pressing the Control key in combination with a letter produces the
appropriate results, as per the ASCII standard. All built-in applications
that use paragraph views ignore the control keys during text input, which
means that users cannot insert control characters into paragraph views.
However, applications such as a terminal emulator can make use of
control keys. Note that the control key is not used for command-key
combinations.

C H A P T E R 4

Keyboard Enhancements

4-10 About Keyboard Enhancements

Preliminary Draft.  Apple Computer, Inc. 4/21/97

■ Pressing the Command key in combination with an alphanumeric key can
be used to invoke a system or application-defined command. Commands
can also be executed by pressing a combination of Command, Option, and
Shift keys along with an alphanumeric key.

Text entry and editing 4

Users can apply the following keyboard actions during text entry and text
editing:

■ Pressing the arrow and tab keys to move between fields.

■ Pressing the standard Macintosh clipboard key combinations produces the
same actions as on the Macintosh: Cmd-X to cut the selection to the
clipboard, Cmd-C to copy the selection to the clipboard, and Cmd-V to
paste from the clipboard.

■ Pressing the Cmd-A key combination selects all text in the view.

Slips, windows, and buttons: 4

The key-view is generally the view that contains the caret and receives and
processes keyboard commands. A slip is displayed differently when it is the
key-view, to indicate to the user that key presses are directed to the slip.

Figure 4-1 shows how the find slip looks when it is not the key-view.

Figure 4-1 The find slip when it is not the key view

C H A P T E R 4

Keyboard Enhancements

About Keyboard Enhancements 4-11
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Figure 4-2 shows how the Find slip looks when it is the key view.

Figure 4-2 The Find slip when it is the key view

When a slip is the key-view, its border is thicker, and the default button is
marked with lines above and below the button. The user can select the
default button by pressing the Return key. These appearance features are
only applied when a keyboard is connected. When a keyboard is not
connected, the default button looks just like any other button and the slip
containing the caret is drawn exactly like other slips.

As soon as the user taps to move the caret, the border and the default button
change to match the new caret location. Note that since the caret can be
placed in a slip that is not the frontmost slip, the key-view slip is not
necessarily the same as the frontmost slip.

Older applications do not have default buttons. However, the borders of
slips drawn in older applications are highlighted as shown above when they
contain the caret.

The user can close the frontmost window or slip by pressing the Cmd-W key
combination, the Cmd-period key combination, or the “Close” key on the
eMate 300 keyboard. This does work with older applications. Also note that,
unlike other keyboard commands, the close button is applied to the
frontmost slip regardless of whether that slip contains the caret.

C H A P T E R 4

Keyboard Enhancements

4-12 About Keyboard Enhancements

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Menus 4

This section describes keyboard usage with Newton menus.

Application-defined keys or key combinations can be used to display popup
menus. Some system-wide standards are defined (such as Cmd-N for New
and Cmd-R for the routing menu, among others), but application developers
can override these definitions if desired.

While a menu is displayed, the user can change the highlighted item by
pressing the up-arrow and down-arrow keys. If necessary, the menu will
scroll up or down. The right-arrow and left-arrow keys are also supported
for menus that contain two-dimensional grids.

When a menu is opened by way of a keyboard command, the first item of the
menu is initially highlighted. If the menu is opened in some other way, no
item is initially highlighted; in this case, the user can highlight the top item
by pressing the down-arrow key, or the user can highlight the bottom item
by pressing the up-arrow key.

Pressing the Return key selects the highlighted item. This is the same as
tapping on that item.

Pressing a letter or sequence of letters “type-selects” menu items, as in the
Macintosh Finder and standard file dialogs. If necessary, the menu scrolls to
reveal the type-selected item.

Menu items can have keyboard equivalents that are displayed to the right of
the item. These are only displayed when a keyboard is actually connected.

Note

Only printable characters are displayed on menus as key
equivalents. ◆

The key equivalents can be used when the receiving application contains the
caret or when the menu is open. Figure 4-3 shows the basic appearance of a
menu with and without its keyboard equivalents displayed.

C H A P T E R 4

Keyboard Enhancements

About Keyboard Enhancements 4-13
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Figure 4-3 A menu with and without its keyboard equivalents displayed

Note

The keyboard equivalents shown in Figure 4-3 are not the
actual key-combinations for these commands. ◆

The Command-key Combination popup Help Slip 4

Keyboard equivalents are not displayed for buttons. Instead, the user can
display a popup help slip by holding down the command key for
approximately 1.5 seconds. The popup help slip displays all of the valid
command keys for the current context.

The system automatically produces the popup help slip. You register your
application’s command-key combinations, as described in “The
Command-Key Mapping Frame” (page 4-31), and the system constructs the
help slip based on which command keys are available.

The popup help slip displays the available commands ordered alphabetically
by category. Your application can add to the standard categories or can
define new categories, as described in “Handling Command Keys”
(page 4-24).

Figure 4-4 shows a version of the command-key combination popup slip.

C H A P T E R 4

Keyboard Enhancements

4-14 About Keyboard Enhancements

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Figure 4-4 Command-key combination slip

The popup help slip does not display function key equivalents, which are
permanently labeled on the eMate 300 keyboard.

The popup help slip closes automatically when the user releases the
command key, or when the user presses any key on the keyboard.

If the number of commands defined exceeds the maximum number that can
be displayed at once, the system adds a scroller to the popup help slip. The
user can scroll the view with the up-arrow and down-arrow keys (while
holding down the command key), or by tapping on the scroller’s buttons.
The user must continue to press the command key while scrolling the view.

If a command lacks a name, the command does not appear in the popup help
slip. This is true of the standard command-arrow combinations for

C H A P T E R 4

Keyboard Enhancements

About Keyboard Enhancements 4-15
Preliminary Draft.  Apple Computer, Inc. 4/21/97

navigation. If a key-combination command has no category, but does have a
name, it is automatically placed in the “Other” category.

Applications can completely override this slip by providing a different help
slip, or can use the information presented in the default slip in their own
way, as described in “Handling Command Keys” (page 4-24).

System and Built-in App Command Key Assignments 4

This section describes the command-key combinations for system-level and
built-in application operations. Table 4-2 shows the system-level
command-key combinations.

Table 4-2 System-level key assignments

Command-key
combination Behavior

Cmd-A Selects all text in a note or the current view

Cmd-C Copies selected text to clipboard

Cmd-E Opens the title slip

Cmd-F Opens the Find slip

Cmd-N Opens the New button picker

Cmd-O Opens the overview, toggles to close overview

Cmd-P Opens the print slip

Cmd-R Opens the Routing button picker, with first item hilited

Cmd-S Opens the Show button picker

Cmd-V Pastes selected text at cursor

Cmd-W Closes the open window/slip

Cmd-X Cuts selected text

Cmd-Z Undo/redo

Cmd-return Opens popup

C H A P T E R 4

Keyboard Enhancements

4-16 About Keyboard Enhancements

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Notes

The system-level key assignments do not include
combinations for accessing Prefs, the Info button, or the Edit
Folders button.

When local scrollers are present, the Cmd-up-arrow and
Cmd-down-arrow key combinations affect the local scrollers.
◆

Cmd-` (tilde) Opens assist

Cmd-. (period) Cancels action, closes window or slip

Cmd-= Activates spellcheck

Cmd-shift -F Opens the Filing button picker, tab/arrow supported

Cmd-shift S Opens the styles slip

Cmd-shift T Opens the folder tab

Cmd-? Opens help file

Cmd-up/
down arrows

Scrolls up and down, except in the Newton Works Word
Processor, in which it scrolls to the beginning or end of
the document.

up/down
arrows

Moves highlight up or down in overview or picker

Return Selects highlighted item from overview or picker

Table 4-2 System-level key assignments (continued)

Command-key
combination Behavior

C H A P T E R 4

Keyboard Enhancements

About Keyboard Enhancements 4-17
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Command-key Assignments for the NotePad Application 4

Table 4-3 shows the command-key assignments for the Notepad checklist
and outline stationery.

Note

There are no keyboard commands for demoting, promoting,
expanding, or collapsing already created items. The user can
only perform these operations with the pen. ◆

Command-Key Assignments for The Names Application 4

Table 4-4 shows the command-key assignments for the Names application.

Note

New users will often press Return or Enter after they fill in
the first of the entry screens, rather than the preferred
Cmd-W. ◆

Table 4-3 Notepad checklist and outline stationery command keys

Command Keys Behavior

Cmd-] Creates a new right bulleted item

Cmd- [Creates a new left bulleted item

Cmd-return Checks/unchecks an item

Cmd-= Creates a bulleted item (same level)

Table 4-4 Names application command keys

Command Keys Behavior

Cmd- + Opens the Add picker. The user can choose the item
with the arrow and Return keys.

C H A P T E R 4

Keyboard Enhancements

4-18 About Keyboard Enhancements

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Command-Key Assignments for The Dates Application 4

Table 4-5 shows the command key assignments for the Dates application.

Command-Key Assignments for The In/Out Box 4

Table 4-6 shows the command key assignments for the In/Out box

Table 4-5 Dates application command keys

Command Keys Behavior

Cmd-+ Opens the Add picker. The user can choose the item
with the arrow and Return keys.

Table 4-6 In/Out box command keys

Command Keys Behavior

Cmd-left-arrow Opens In Box

Cmd-right-arrow Opens Out Box

Cmd-E Taps the send button when in an item; taps the send
or receive when in box view

Cmd-G Taps the tag button

C H A P T E R 4

Keyboard Enhancements

About Keyboard Enhancements 4-19
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Command-Key Assignments for The Call Log 4

Table 4-7 shows the command-key assignments for the call log.

Command-Key Assignments for the BookPlayer 4

Table 4-8 shows the command-key assignments for the BookPlayer
application.

Compatibility 4
This section documents keyboard-related compatibility issues for older
applications.

Default Buttons 4

Default buttons in slips appear and function only in applications that were
designed with them in mind. This is described in “Designating the Default
Button In a Slip” (page 4-29).

Table 4-7 Call log command keys

Command Keys Behavior

Cmd- + Taps the Add to Names button

Cmd-D Taps the Call button

Cmd-H Taps the Hang-up button

Table 4-8 BookPlayer command keys

Command Keys Behavior

Cmd- B Taps the Bookmark button

Cmd-G Taps the Page Number button

Cmd-M Taps the Markup button

C H A P T E R 4

Keyboard Enhancements

4-20 Using the Keyboard Enhancements

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Possible Key-view Compatibility Problem 4

Prior to Newton 2.1 OS, you could not set the key-view to anything other
than a clParagraphView (using Setkeyview) or a clEditView (using
SetCaretInfo). In Newton 2.1 OS, you can designate any view as a
key-view. This could be a problem for some older applications.

Using the Keyboard Enhancements 4

This section describes how you can use the keyboard enhancements in your
applications.

There are two main areas of keyboard handling that you need to understand:

■ How to handle keystrokes from a keyboard, as described in “Keystroke
Handling” (page 4-20).

■ How to work with command keys, as described in “Handling Command
Keys” (page 4-24).

Keystroke Handling 4
This section describes how to handle keystrokes in your Newton
applications. Table 4-9 shows the functions and methods that you can use to
handle keystrokes.

Table 4-9 Summary of keystroke-handling methods and functions

Function/Method Description

IsCommandKeystroke Determines if a keystroke is a command key
combination.

ViewKeyDownScript Sent to the key-view when the user presses a
key.

C H A P T E R 4

Keyboard Enhancements

Using the Keyboard Enhancements 4-21
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Intercepting Keystrokes Directly 4

To intercept keystrokes directly, you need to respond to the key-down,
key-repeat, and key-up events. If you set the vSingleKeystrokes text flag
for your view, you are guaranteed that the scripts for these key events are
called for every keystroke. If you do not set the vSingleKeystrokes text
flag for your view, the scripts are called only under certain circumstances.

Note

Setting the vSingleKeystrokes text flag in a paragraph
view results in a substantial reduction in typing
performance for the user. This is because the system
processes each keystroke individually, rather than batching a
set of keystrokes into a string.

The system software calls a method for each of the keyboard events. For an
overview of the sequencing of actions when the user presses keys, see
“Keystroke Event Sequencing” (page 4-3). If the method returns nil (to
indicate that the system should continue processing the key event), the
system next checks the key to determine if it is a command key. If the event is
not a command key, the system hands the key event to the appropriate view
for default handling.

The functions and event scripts for handling keystrokes are shown in
Table 4-9; their use is described in the remainder of this section.

ViewKeyUpScript Sent to the key-view when the user releases a
key.

ViewKeyStringScript Sent to the key-view when a group of
keystrokes needs to be processed. This can
occur when single keystroke handling is not
applied to the key-view (when the
vSingleKeystrokes flag is not set.

ViewKeyRepeatScript Sent to the key-view while the user holds a
key down.

Table 4-9 Summary of keystroke-handling methods and functions

Function/Method Description

C H A P T E R 4

Keyboard Enhancements

4-22 Using the Keyboard Enhancements

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Intercepting Individual Keystrokes 4

Here is an example of code that processes individual keystrokes.

ViewKeyDownScript: func(char, flags)
begin
if char = unicodeCR then

begin
:OutputTextLine(self.text);
SetValue(self, 'text, "");
return true;
end;

// Explicitly return nil just for clarity
nil;

end;

Intercepting Grouped Keystrokes 4

If you have not set the vSingleKeystrokes flag for the key-view, the
system groups together a set of keystrokes (a keystring) for batch processing
and sends the ViewKeyStringScript message when a group of
keystrokes is ready to be handled.

Note

Although the system can group keystrokes into keystrings,
this only happens when the user is typing at a very high
speed. If the system can keep up with individual keystrokes,
the keystrokes are not grouped into a keystring. ◆

Text Flags and Keyboard Input 4

Paragraph views, edit views, and text editing views all accept both
command keys and normal keys (for insertion). For other views, there are

C H A P T E R 4

Keyboard Enhancements

Using the Keyboard Enhancements 4-23
Preliminary Draft.  Apple Computer, Inc. 4/21/97

two additional textFlags that you can use to specify the kinds of
keystrokes you want to handle, as shown in Table 4-10.

Note:

Do not use the text flags shown in Table 4-10 for edit views,
paragraph views, or word-processing (protoTXView)
views, all of which always act as if both flags are on (as long
as they are not read-only views). ◆

These flags are also significant when a normal key is typed. If a normal key is
typed when the key-view accepts only command keys, the key-view is
switched to the frontmost view that accepts normal keys.

You can determine which view is the frontmost view that accepts normal
keystroke by calling GetView as follows:

view := GetView('viewfrontkey);

You can determine which view is the frontmost view that accepts command
keystrokes by calling GetView as follows:

view := GetView('viewfrontcommandkey);

Table 4-10 Text flags to specify the kind of keystrokes a view accepts

Text Flag Description

vTakesCommandKeys The view accepts command keys.

vTakesAllKeys The view accepts all keys, including command
keys.

C H A P T E R 4

Keyboard Enhancements

4-24 Using the Keyboard Enhancements

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Handling Command Keys 4
Each view in your application can have a set of key commands associated
with it. You can use the functions and methods shown in Table 4-11 to work
with key commands.

Searching for Key Commands 4

If your ViewKeyDownScript or ViewKeyRepeatScript methods return
nil, the system tests for a key command by searching for a keyCommand
frame that matches the entered key(s). By default, the system searches for a
keyCommand frame when the the user presses a function key, the escape key,
or any key in combination with the command key. You can also force the
system to search for key commands after each keystroke by setting the
vAlwaysTryKeyCommands text flag in the key view.

Table 4-11 Summary of command key methods and functions

Function/Method Description

view:AddKeyCommand Adds a key command to a view.

view:AddKeyCommands Adds an array of key commands to a view.

view:BlockKeyCommand Blocks a key command from being
associated with a view.

view:ClearKeyCommands Removes all key commands from a view.

view:
RemoveKeyCommandFrame

Removes a specific key command frame
from a view.

SendKeyMessage Sends a key message as if a key command
had been typed on the keyboard.

FindKeyCommand Finds the key command that matches a
command-key combination.

GatherKeyCommands Returns an array of the command keys
associated with a view.

C H A P T E R 4

Keyboard Enhancements

Using the Keyboard Enhancements 4-25
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Defining Key Commands 4

To define a set of key commands, you need to create an array of
keyCommand frames, each of which defines an individual key command. See
“The Command-Key Mapping Frame” (page 4-31) for a full description of
the keyCommand frame slots. Listing 4-2 shows an example of a key
command array.

Listing 4-2 A key command array

keyCommandArray:
[

{
char: $g,
modifiers:kCommandModifier,
keyMessage:'DoGKeyCommand,
name: "Do G Key",

},
{

char: $b,
modifiers:kCommandModifier,
keyMessage:'DoBKeyCommand,
name: "Do B Key",

},
],

Each keyCommand frame specifies the keys that the user presses to invoke
the command, the name to display for the command, and the message that
the system sends when the command is invoked.

Adding the Key-Commands 4

You can use the AddKeyCommand method of a view to add a single
key-command, or you can use the AddKeyCommands method to add an
array of key-commands to the view. You typically add your key-commands
during view setup. Listing 4-3 shows an example of setting up
key-commands in the ViewSetupFormScript method.

C H A P T E R 4

Keyboard Enhancements

4-26 Using the Keyboard Enhancements

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Listing 4-3 Defining key-commands in the ViewSetupFormScript method

ViewSetupFormScript: func()
begin
:AddKeyCommands(keyCommandArray);
end

Note that the most recently added key command for a specific key
combination takes precedence. If, for example, your application defines a
Cmd-F equivalent and adds it using AddKeyCommand, and then adds
another Cmd-F equivalent, the last one added will be the only one seen by
the system.

Invoking the Command-Key Method 4

When the user presses a command-key combination, the system software
sends the message associated with the command key (as defined in its
keyCommand frame). The method that is invoked for the command-key
message need not be implemented in the same view as is the command key.

Once the system software matches a keyCommand, the system searches the
same chain (starting at the key-view and following either _parent or
_nextKeyView slots) until the method has been found. The method is called
with a single parameter: the current key-view. For example, if the key
commands array shown in Listing 4-2 is in use and the user presses the
Cmd-g key-combination, the following call is made:

view:DoGKeyCommand(currentKeyView)

You can examine the current key-view in your implementation to decide
which actions you want to take in your method implementation.

Removing Key-Commands 4

It is good practice to remove your key-commands when your view is closing.
To do so, you can call the ClearKeyCommands method in the
ViewQuitScript method of your view. Listing 4-4 shows an example.

C H A P T E R 4

Keyboard Enhancements

Using the Keyboard Enhancements 4-27
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Listing 4-4 Removing key-commands

ViewQuitScript: func()
begin
:ClearKeyCommands();
inherited:?ViewQuitScript();
end

Note

If you do not remove key commands when your view is
closing, the key commands can waste valuable heap space. ◆

Displaying the Popup Command Key Help Slip 4
When the user has held down the command key for a certain period of time
(1.5 seconds), the system makes the following call:

SendKeyMessage(keyview, '__keyHelpOpenScript);

When the command key is released, the following call is made:

SendKeyMessage(keyview, '__keyHelpCloseScript);

The standard implementation of this command, which is in the root view,
dynamically builds and displays the standard “Keyboard Commands”
popup help slip, according to the available keyCommands. You can provide
your own versions of these scripts to modify or override the default popup
help slip.

The Caret Stack and Caret Activation 4
The system maintains a stack of key-views, which allows the current
key-view to be reset to the previous one when a key-view is closed. For
example, when the user opens the Find slip while the caret is in the notepad,
the caret is moved from the notepad to the input line in the Find slip. Then,
when the user closes the find slip, the caret is returned to the notepad in its
former location.

C H A P T E R 4

Keyboard Enhancements

4-28 Using the Keyboard Enhancements

Preliminary Draft.  Apple Computer, Inc. 4/21/97

The system attempts to preserve selections in this process. If the user selects
a word in the notepad, then opens the find slip and closes it, the word in the
notepad will be re-selected.

The caret stack mechanism is largely invisible to applications. When a view
becomes the key-view (either through a user action or through restoration
from the caret stack) or when a view loses the key-view, the following
message is sent to the view that is losing the caret:

oldkeyview:ViewCaretActivateScript(nil);

Immediately thereafter, the following message is sent to the view that is
getting the caret:

newkeyview:ViewCaretActivateScript(true);

You can use the ViewCaretActivateScript method to trigger actions
when your view becomes the key-view or is no longer the key-view. The
return value is ignored.

Listing 4-5 shows an example of a ViewCaretActivateScript method.
This implementation plays a sound at caret activation time: if a keyboard is
connected, it beeps; if not, it clicks.

Listing 4-5 An example of a ViewCaretActivateScript method

ViewCaretActivateScript: func(active)
begin
if KeyboardConnected() then

:SysBeep();
else

PlaySound(ROM_Click);
nil;
end

Using Keys in Slips 4
This section describes how to use key in your slips.

C H A P T E R 4

Keyboard Enhancements

Using the Keyboard Enhancements 4-29
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Designating the Default Button In a Slip 4

To designate a button as a slip’s default button, you need to create a
_defaultButton slot in the view. This slot must contain a reference to the
view that is the default button. The system automatically applies the
highlighting graphical treatment to the default button.

You need to use a view that protos to the new protoContainerView. This
allows the button to be tapped when the user presses the Return key. Note
that protoApplication, protoDragger, protoFloater,
protoFloatNGo, and many other built-in protos are based on
protoContainerView.

Paragraph views that have the oneLineOnly view justification flag
automatically send the key message _DoDefaultButton, which results in
the default button being tapped. protoContainerView does the same
thing in a ViewKeyDownScript, and implements the _DoDefaultButton
method, which calls PressButton() for the view declared as
_defaultButton.

Designating a Slip’s Close Box 4

You need to let the system know which button is the close button in a slip by
declaring the button in the slip as _closeBox. All of the supplied close box
protos do this automatically; if you implement your own close box, you need
to ensure that the button is declared properly in the slip.

When a slip is closed via the keyboard, the system simulates a tap on the
close box (in the same way the default button is pressed when the user
presses return).

C H A P T E R 4

Keyboard Enhancements

4-30 Using the Keyboard Enhancements

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Default and Close Buttons in Confirm Slips 4

Four new default button lists are now available for use in confirm slips. This
makes it easy to add keyboard support to all of your confirm slips. Table 4-12
shows the new default button lists.

If you are creating your own button list, you can add a slot to the
buttonFrame named keyValue. The value of this slot can be 'nil,
'default, or 'close. The confirm slip will associate the appropriate
keystroke with each button value. A value of nil means no key association.

A final note: the root view version of the Confirm method (:Confirm())
previously used the okCancel button list; it now uses the
okCancelDefaultOk button list instead.

Table 4-12 New default button lists

Button list Description

'okCancel The user can select either Ok or Cancel. The
system closes the slip when the user taps
Cancel. The default value is Ok.

'okCancelDefaultC
ancel

The user can select either Ok or Cancel. The
system does not provide a keyboard equivalent
for the Ok button. The default value is Cancel.

'yesNoDefaultYes The user can select Yes or No. The system closes
the slip when the user taps No. The default
value is Yes.

'yesNoDefaultNo The user can select Yes or No. The system does
not provide a keyboard equivalent for Yes. The
default value is No.

C H A P T E R 4

Keyboard Enhancements

Keyboard Reference 4-31
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Keyboard Reference 4

This section describes the functions, methods, and data structures for
keyboard handling in Newton applications.

Data Structures 4
This section describes the data structures that you use with the keyboard
enhancement methods and functions.

The Command-Key Mapping Frame 4

The mapping between keystrokes and commands is defined by keyCommand
frames, which are used for the following purposes:

■ keyboard command dispatch and execution

■ menu display

■ display on the key equivalent help slip

The keyCommand frame contains six slots, as shown here:

keyCommand := {
char: $a,
modifiers: kCommandModifier,
keyMessage: '_SelectAll,
name: "Select All",
category: "Editing"
showChar: $a

};

C H A P T E R 4

Keyboard Enhancements

4-32 Keyboard Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Slot descriptions

char The unmodified character of the keypress. Required.
modifiers The required modifiers. This slot can be absent or nil,

in which case no modifiers are required.
This slot can also be used to specify other flags related
to the command:

kRepeatable
The command is to be executed on key-repeat events as
well as key-down events.

kWorksInAllModals
Applies only to system-wide (root view) commands.
When set, the command is available in modal dialogs.

kWorksInAppModals
Applies only to system-wide (root view) commands.
When set, the command is available in modal dialogs
whose vApplication bit is set.

keyMessage A symbol. Required. This is the message that is sent
when the keyCommand is matched. You must supply a
method of this name that takes a single parameter (the
current key-view) somewhere in the key-view chain.
The method is called when the system matches the key
command.

name A string. The name of the command that appears on
menus and the command key popup help slip. If this
slot is nil or absent, the key equivalent is not displayed
on the popup help slip.

category A string. The name of the category to which the
command belongs on the command key popup help
slip. If this slot is absent or nil, but there is a name slot,
the command is placed in the “Other” category on the
command key popup help slip.

showChar A character. Optional. If present, this character is shown
on popup menus and in the popup help slip instead of
the character in the char slot. This is useful for
presenting a more user-friendly key combination to the
user than the actual combination. For example, you can

C H A P T E R 4

Keyboard Enhancements

Keyboard Reference 4-33
Preliminary Draft.  Apple Computer, Inc. 4/21/97

define the Cmd-/ combination and present it as Cmd-?
by defining this slot with the ‘?’ character.

Table 4-13 shows the key codes for special (non-printing) keyboard keys. You
can use these values in the char slot of your keyCommand frame.

Table 4-13 Key codes for special keys

Constant Value

kTabKey $\u0009

kBackspaceKey $\u0008

kReturnKey $\u000D

kEnterKey $\u0003

kEscKey $\u001B

kLeftArrowKey $\u001C

kRightArrowKey $\u001D

kUpArrowKey $\u001E

kDownArrowKey $\u001F

kF1Key $\uF721

kF2Key $\uF722

kF3Key $\uF723

kF4Key $\uF724

kF5Key $\uF725

kF6Key $\uF726

kF7Key $\uF727

kF8Key $\uF728

kF9Key $\uF729

C H A P T E R 4

Keyboard Enhancements

4-34 Keyboard Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Note

The function keys (KF1Key through kF15Key) are only
available on the eMate 300 keyboard. ◆

Methods and Functions for Handling Keystrokes 4
This section describes the methods and functions you can use to handle
keystrokes in your applications.

HandleKeyEvents 4

HandleKeyEvents(keyEvents)

Posts key events as if they were typed on a hardware keyboard. You can use
this function for testing purposes or to play back keyboard macros.

keyEvents An array of integers. Each integer specifies a single
key-down or key-up event. The least significant seven
bits of each integer specify a key code value, and the
eighth bit indicates whether or not the event is a
key-down event. Add 128 to the key code value to
simulate a key-down event.

return value Undefined; do not rely on it.

kF10Key $\uF72A

kF11Key $\uF72B

kF12Key $\uF72C

kF13Key $\uF72D

kF14Key $\uF72E

kF15Key $\uF72F

Table 4-13 Key codes for special keys (continued)

Constant Value

C H A P T E R 4

Keyboard Enhancements

Keyboard Reference 4-35
Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

The state of the hardware keyboard (its keymap) is saved and restored before
and after the events are handled so that inconsistencies are avoided (that is, if
the Shift key is down on the actual keyboard, it had better be down in the
hardware keyboard’s keyMap).

Note

You cannot simulate key-repeat events with the
HandleKeyEvents function. ◆

IsCommandKeystroke 4

IsCommandKeystroke(char, flags)

Determines if the specified keystroke is a command-key combination.

char The character that was entered on the keyboard. Note
that if a modifier key is the only key pressed (for
example, the Shift key), this value will be 0.

flags A 30-bit integer that specifies which modifier keys were
pressed and other additional information. The use of the
individual bits in this value are shown in Table 4-14.

return value Returns true if the keystroke is a command-key
combination, and nil if not.

IsKeyDown 4

IsKeyDown(keyCode, isHardKeyboard)

Determines if the specified key is currently down.

keyCode The keycode that you want to test.

isHardKeyboard True if you want the hardware keyboard tested. A
value of nil means that the on-screen keyboard is
tested.

return value Returns true if the specified key is down on the
keyboard.

C H A P T E R 4

Keyboard Enhancements

4-36 Keyboard Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

This function works for both on-screen and hardware keyboards.

Note that the system maintains two separate key maps, one for all on-screen
keyboards, and one for the connected hardware keyboard.

Methods and Functions for Handling Command Keys 4
This section describes the methods and functions that you can use to work
with command keys in your Newton applications. You define key commands
in keyCommand frames, which are described in “The Command-Key
Mapping Frame” (page 4-31). Each keyCommand frame associates a key
combination with a message and other information.

AddKeyCommand 4

view:AddKeyCommand(keyCommandFrame)

Associates a key command with the view.

keyCommandFrame A key command frame, as described in “The
Command-Key Mapping Frame” (page 4-31).

return value Undefined; do not rely on it.

DISCUSSION

You can call this method from your ViewSetupDoneScript.

AddKeyCommands 4

view:AddKeyCommands(arrayOfKeyCommandFrames)

Associates a collection of key commands with the view.

arrayOfKeyCommandFrames
An array of key command frames, as described in “The
Command-Key Mapping Frame” (page 4-31).

return value Undefined; do not rely on it.

C H A P T E R 4

Keyboard Enhancements

Keyboard Reference 4-37
Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

You can call the AddKeyCommands method from your
ViewSetupDoneScript.

This method is efficient for adding an array of key commands at once. A
minimum of cloning is performed; in the case that a view already has one or
more keyCommands defined, some cloning is performed.

BlockKeyCommand 4

view:BlockKeyCommand(keyMessageSymbol)

Hides a key command that would ordinarily be accessible in the view.

keyMessageSymbol
A symbol that names the command message. This must
be the same message as you specified in the
keyMessage slot of the keyCommand frame.

return value Undefined; do not rely on it.

DISCUSSION

The BlockKeyCommand method makes any key command that matches
keyMessageSymbol unavailable from the view. The key command no longer
appears on the command key popup help slip in the view.

IMPORTANT

The AddKeyCommand and BlockKeyCommand methods
grow a RAM-based array, so you must be careful to not
overuse these methods. ◆

CategorizeKeyCommands 4

CategorizeKeyCommands(keyCommandArray)

Categorizes an array of key command frames.

keyCommandArray An array of keyCommand frames.

return value Undefined; do not rely on it.

C H A P T E R 4

Keyboard Enhancements

4-38 Keyboard Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

This function sorts the keyCommandArray by category. Within each
category, the keyCommand frames are sorted by name.
CategorizeKeyCommands returns an array of frames that describe each
category and its key commands. For example:

{ category: "myName", keyCommands: [kc1, kc2, kc3...] }

You can use this function to create your own popup command key help slip.

RemoveKeyCommandFrame 4

view:RemoveKeyCommandFrame(keyCommand)

Removes the specified key command frame from the view.

keyCommand The keyCommand frame to remove from the registry for
the view. This frame must match the frame used in a
previous call to the AddKeyC ommand or
AddKeyCommands methods.

return value Undefined; do not rely on it.

DISCUSSION

The RemoveKeyCommandFrame method removes a specific key-command
frame from view. Not that RemoveKeyCommandFrame actually removes the
RAM-based frame from the registry.

ClearKeyCommands 4

view:ClearKeyCommands()

Removes all key commands from the view.

return value Undefined; do not rely on it.

DISCUSSION

The ClearKeyCommands method removes all key commands that are
defined in the view. This method does not, however, remove key commands
that are available in the view but defined elsewhere.

C H A P T E R 4

Keyboard Enhancements

Keyboard Reference 4-39
Preliminary Draft.  Apple Computer, Inc. 4/21/97

FindKeyCommand 4

FindKeyCommand(startView, char, flags)

Searches for and returns the key command frame that matches a key
combination.

startView The view in which to start searching for the command
key.

char The command key character. Note that if a modifier key
is the only key pressed (for example, the Shift key), this
value will be 0.

flags A 30-bit integer that specifies which modifier keys were
pressed and other additional information. The use of the
individual bits in this value are shown in Table 4-14.

return value The matching keyCommand or nil if none is found.

DISCUSSION

The FindKeyCommand function starts at the view startView and looks for a
keyCommand frame that matches the keypress described by char and flags.

GatherKeyCommands 4

GatherKeyCommands(startView)

Returns an array of all key commands available in the view.

startView The view in which you are interested.

return value An array of all the key commands available to the view
startView.

PressButton 4

PressButton(buttonView)

Causes the button to act as if it had been tapped by the user.

buttonView The button you want tapped.

return value Undefined; do not rely on it.

C H A P T E R 4

Keyboard Enhancements

4-40 Keyboard Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

The ViewClickScript in buttonView is not called and thus does not need
to be defined. All other button-related scripts are called as if the button had
been tapped with the pen.

SendKeyMessage 4

SendKeyMessage(keyView, keyMessage)

Sends a message to a view as if the user had typed a key command.

keyView The view to which the message gets sent.

keyMessage A symbol that names the command message. This must
be the same message as you specified in the
keyMessage slot of the keyCommand frame.

return value Undefined; do not rely on it.

DISCUSSION

The SendKeyMessage function sends the message using the same lookup
rules that are used when a key command is being handled by the system.

Application-Defined Methods for Keystroke Events 4
This section describes the methods that you can define in your application to
intercept keystroke events.

C H A P T E R 4

Keyboard Enhancements

Keyboard Reference 4-41
Preliminary Draft.  Apple Computer, Inc. 4/21/97

ViewKeyDownScript 4

view:ViewKeyDownScript(char, flags)

Sent by the system when a user presses down a keyboard key.

char The character that was entered on the keyboard. Note
that if a modifier key is the only key pressed (for
example, the Shift key), this value will be 0.

flags A 30-bit integer that specifies which modifier keys were
pressed and other additional information. The use of the
individual bits in this value are shown in Table 4-14.

return value Your implementation must return nil if you want the
system to continue processing the keystroke.

DISCUSSION

Table 4-14 shows how the bits in the flags parameter are used for the key
event scripts.

Table 4-14 Key event-processing script flags

Bits Description

0 to 7 The keycode.

8 to 23 The 16-bit character that would be inserted if none of the
modifier keys were pressed.

24 Indicates whether the key was delivered from an
on-screen keyboard. (kIsSoftKeyboard)

25 Indicates that the Command key was down.
(kCommandModifier)

26 Indicates that the Shift key was down.
(kShiftModifier)

C H A P T E R 4

Keyboard Enhancements

4-42 Keyboard Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

ViewKeyUpScript 4

view:ViewKeyUpScript(char, flags)

Is sent by the system when the user releases a keyboard key.

char The character that was entered on the keyboard. Note
that if a modifier key is the only key pressed (for
example, the Shift key), this value will be 0.

flags A 30-bit integer that specifies which modifier keys were
pressed and other additional information. The use of the
individual bits in this value are shown in Table 4-14.

return value Your implementation must return nil if you want the
system to continue processing the keystroke.

27 Indicates that the Caps Lock key was down.
(kCapsLockModifier)

28 Indicates that the Option key was down.
(kOptionsModifier)

29 Indicates that the Control key was down.
(kControlModifier)

Table 4-14 Key event-processing script flags (continued)

Bits Description

C H A P T E R 4

Keyboard Enhancements

Keyboard Reference 4-43
Preliminary Draft.  Apple Computer, Inc. 4/21/97

ViewKeyRepeatScript 4

view:ViewKeyRepeatScript(char, flags)

Sent by the system repeatedly while the user holds down a keyboard key.

char The character that was entered on the keyboard. Note
that if a modifier key is the only key pressed (for
example, the Shift key), this value will be 0.

flags A 30-bit integer that specifies which modifier keys were
pressed and other additional information. The use of the
individual bits in this value are shown in Table 4-14.

return value Your implementation must return nil if you want the
system to continue processing the keystroke.

ViewKeyStringScript 4

view:ViewKeyStringScript(string)

Sent by the system when a batched group of keystrokes is ready to be
processed.

string The batched string of characters as a null-terminated
string. These are not keycodes.

return value Your implementation must return true if your method
handles the string and nil if not.

DISCUSSION

Note that function keys and command-key combinations never appear in
string. These keys are always processed individually.

C H A P T E R 4

Keyboard Enhancements

4-44 Keyboard Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Summary of Keyboard Enhancements 4

Data Structures 4

Command-Key MappingFrame 4

{
char: char, // unmodified keypress
character
modifiers: int, // modifiers
keyMesage: symbol, // message to send for
key-command
name: string, // command name for menus
category: string, // command category
showChar: char, // char to display in menus
}

Methods and Functions 4

// Posts key events as if they were typed on a
hardware keyboard
HandleKeyEvents(keyEvents)

// Determines if the keystroke is a command-key
combination.
IsCommandKeystroke(char, flags)

// Determines if a key is down
IsKeyDown(keyCode, isHardKeyboard)

// Associates key-command with view
view:AddKeyCommand(keyCommandFrame)

C H A P T E R 4

Keyboard Enhancements

Keyboard Reference 4-45
Preliminary Draft.  Apple Computer, Inc. 4/21/97

// Associates an array of key-commands with a view
view:AddKeyCommands(arrayOfKeyCommandFrames)

// Hides a key-command in a view
view:BlockKeyCommand(keyMessageSymbol)

// Categorizes an array of key-command frames
CategorizeKeyCommands(keyCommandArray)

// Removes all key-commands from a view
view:ClearKeyCommands()

// Finds key-command that matches key combination
FindKeyCommand(startView, char, flags)

// Returns array of all key commands in a view
GatherKeyCommands(startView)

// Causes a button to act as if it was tapped
PressButton(buttonView)

// Sends a message to a view as if the user typed a
key-command
SendKeyMessage(keyView, keyMessage)

// Sent to view when user presses down on key
view:ViewKeyDownScript(char, flags)

// Sent to view when user releases a key
view:ViewKeyUpScript(char, flags)

// Sent repeatedly to view while user holds a key down
view:ViewKeyRepeatScript(char, flags)

// Sent to view when a batch of keystrokes needs
processing
view:ViewKeyStringScript(string)

C H A P T E R 4

Keyboard Enhancements

4-46 Keyboard Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

About the Spell Checker 5-1
Preliminary Draft.  Apple Computer, Inc. 4/21/97

C H A P T E R 5

Spell Checker 5

This chapter documents the built-in spell checker available in Newton 2.1 OS.

About the Spell Checker 5

The built-in spell checker is a fast, dictionary-based spell checker. It supports
letter insertion, letter deletion, letter transposition, letter substitution, and
phonetic substitution. It can also split run-together words. It can remember
words that have been skipped in the current spell-check session, so it won’t
flag them as incorrect again, and it supports an interface for learning words.

It is also smart about locales. Locale-specific spellings (color versus colour)
are provided by locale-specific dictionaries, so these spellings are allowed
only in the proper locale.

Currently, the spell checker supports English only.

The spell checker has no built-in user interface. It exists as a set of global
function calls. The Newton Works word processor implements a user
interface for it, but you must create your own user interface if you want to
add the spell checker capabilities to your own application.

Figure 5-0
Listing 5-0
Table 5-0

C H A P T E R 5

Spell Checker

5-2 Using the Spell Checker

Preliminary Draft.  Apple Computer, Inc. 4/21/97

If you need to test for the existence of the spell checker in the system (for an
application that runs on all 2.x systems), you can use the following test:

if GlobalFnExists('SpellDocBegin) then ...

Limitations 5

There are some limitations to the spell checker.

■ There’s a maximum character length of 50 for both input words and
returned guesses. If a word is longer than 50 characters, it won’t be
flagged as containing a spelling error.
Note that there are other word length limitations within the system
(usually 30 characters) preventing long words from being added to the
personal word list, for example.

■ The spell checker doesn’t allow random insertion, deletion, or substitution
during the phonetic substitution. This means, for example, that it won't
correct the word “hexllow”, because that would require both removing
the “x” and substituting “o” for “ow”.

Using the Spell Checker 5

You tell the spell checker that you’re about to start spell-checking a
document by calling this function:

local speller := SpellDocBegin();

Then for each word in the document, you call the function SpellCheck. The
SpellCheck function returns non-nil if the word appears to need correction.

For words needing correction, you call the function SpellCorrect.
SpellCorrect returns a list of possible alternate words. If you want the spell
checker to temporarily remember words that have been skipped, call the
function SpellSkip. SpellSkip remembers words for the currently spell-check
session only. If you want a word to be permanently learned, call the function
SpellLearn, which adds a word to the user’s personal word list.

C H A P T E R 5

Spell Checker

Using the Spell Checker 5-3
Preliminary Draft.  Apple Computer, Inc. 4/21/97

When you have finished processing all the words in the document, call the
function SpellDocEnd. This clears out the list of words that have been
skipped, and it causes the learned words to be saved to the personal word
list on the user store.

One way of using the spell checker is to call SpellDocBegin when you open a
document, and SpellDocEnd when you close it. This preserves the
skipped-word list for as long as the document is open.

Note that the spell checker can be used on multiple documents
simultaneously.

Processing of Words Passed to the Spell Checker 5
Many of the spell-checking functions accept a word as a parameter. This
parameter is processed similarly by these functions. First, leading and
trailing punctuation are stripped from the word. Next the spell checker
remembers whether the word was capitalized or all caps, and converts the
word to lower-case. If the word contains a curly apostrophe (’), it is
converted to a normal apostrophe (because that’s what’s in the dictionary).

Note that a hyphen is not considered to be a valid symbol by the spell
checker. The application must split hyphenated words before calling the spell
checker.

Use of Dictionaries by the Spell Checker 5
The spell checker assembles a list of dictionaries to use for both checking and
correction. A word is considered to be valid if it is in one of the built-in
dictionaries (with appropriate locale-specific words), the user’s personal
word list, or the list of skipped words.

The dictionaries used are the same as the dictionaries that are used by the
cursive recognizer in a view with the vAnythingAllowed view flag set. For
checking, the spell checker scans through the list of dictionaries looking for
dictionaries that have any of the following flags set: vCharsAllowed,
vDateField, vTimeField, vPhoneField, vNumbersAllowed. This means that dates,
times, phone numbers, and numbers are “spell-checked” against the built-in
lexical dictionaries.

C H A P T E R 5

Spell Checker

5-4 Spell Checker Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

For correction, the spell-checker uses the dictionaries that have the
vCharsAllowed flag set, which includes third party dictionaries that have been
installed as default dictionaries. The lexical dictionaries are not used for
correction because they generate too many correct alternatives.

Spell Checker Reference 5

Functions 5
This section describes the spell checker global functions.

SpellDocBegin 5

SpellDocBegin()

Initializes the spell checker.

return value A frame referencing a data structure for the current
spell-checking session.

DISCUSSION

Call this function before you begin to spell check a document. Among other
things, this function initializes the list of skipped words to be empty (see
SpellSkip).

When you are done spell checking, you must call SpellDocEnd.

SpellDocEnd 5

SpellDocEnd(speller)

Frees the data structures allocated for a spell-checking session and performs
other clean-up functions.

speller The frame returned by the SpellDocBegin function.

return value Undefined; do not rely on it.

C H A P T E R 5

Spell Checker

Spell Checker Reference 5-5
Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

You must call this function when you have finished spell checking your
document. This function causes the user’s personal word list to be saved if
the SpellLearn function had been called, deletes the list of skipped words,
and then deallocates the spell checker data structures. Once you have called
SpellDocEnd, the speller frame cannot be used in subsequent calls. You must
call SpellDocBegin to start another session.

SpellCheck 5

SpellCheck(speller, word)

Checks the spelling of a word.

speller The frame returned by the SpellDocBegin function.

word A string containing a word to spell check.

return value A nil value indicates that the word or number is
correct. A non-nil value indicates that the word may
need to be corrected.

DISCUSSION

This function first processes the word as described in “Processing of Words
Passed to the Spell Checker” (page 5-3). It then looks to see if the word is in
one of the dictionaries or word lists. If so, SpellCheck returns nil. If the word
is not in a dictionary, or if its capitalization is not correct, then SpellCheck
returns non-nil.

Here are some examples:

SpellCheck(s, "and") => nil // word is spelled correctly
SpellCheck(s, "And") => nil // word is spelled correctly
SpellCheck(s, "AND") => nil // word is spelled correctly
SpellCheck(s, "ernie") => non-nil // capitalization is wrong
SpellCheck(s, "Ernie") => nil // word is spelled correctly
SpellCheck(s, "ERNIE") => nil // word is spelled correctly
SpellCheck(s, "irs") => non-nil // word needs all caps
SpellCheck(s, "Irs") => non-nil // word needs all caps
SpellCheck(s, "IRS") => nil // word is spelled correctly
SpellCheck(s, "(and.)") => nil // word is spelled correctly
SpellCheck(s, "(bxnd.)") => non-nil // word is not spelled correctly
SpellCheck(s, "isn't") => nil // word is spelled correctly

C H A P T E R 5

Spell Checker

5-6 Spell Checker Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

SpellCheck(s, "isn’t") => nil // word is spelled correctly
SpellCheck(s, "so-so") => non-nil // word is not spelled correctly
SpellCheck(s, "ab#de") => non-nil // word is not spelled correctly
SpellCheck(s, "so") => nil // word is spelled correctly

SpellCorrect 5

SpellCorrect(speller, word)

Returns a list of correct alternates for a word.

speller The frame returned by the SpellDocBegin function.

word A string containing a word to correct.

return value An array of strings containing correct alternates for
word. The value nil or an empty array might also be
returned if there are no alternates found.

DISCUSSION

This function first processes the word as described in “Processing of Words
Passed to the Spell Checker” (page 5-3). It then uses the resulting word to
generate a list of possible correct alternates for the word. If it finds no
alternates, it returns either nil or an empty array.

The returned list contains up to 7 alternates, ordered by their similarity to the
original word. Each alternate is punctuated as was the original word, and it
is also capitalized like the original (unless fixing the capitalization was part
of the problem), so the returned alternates can be directly substituted for the
original word.

Note that SpellCorrect can suggest alternates for correctly spelled words,
even though it is normally used only for words that SpellCheck flagged as
incorrect.

The following examples provide an indication of the types of corrections that
SpellCorrect makes:

SpellCorrect(s, "bxnd") => ["band", "bend"...] // letter substitution
SpellCorrect(s, "baxnd") => ["band"] // letter deletion
SpellCorrect(s, "bnd") => ["bond", "band"...] // letter insertion
SpellCorrect(s, "ernie") => ["Ernie", "Renie"...] // capitalization
SpellCorrect(s, "hisn’t") => ["hasn’t", "isn’t"] // curly apostrophe preserved
SpellCorrect(s, "(and.)") => ["(and.)", "(end.)"...] // punctuation preserved

C H A P T E R 5

Spell Checker

Spell Checker Reference 5-7
Preliminary Draft.  Apple Computer, Inc. 4/21/97

SpellCorrect(s, "looseends") => ["loose ends"] // words split
SpellCorrect(s, "unfourtaneatly") => ["unfortunately"] // phonetic substitution
SpellCorrect(s, "Shes") => ["She's", "Shoes"...] // case preserved
SpellCorrect(s, "SHEP") => ["SHEEP", "SHIP"...] // case preserved

SpellSkip 5

SpellSkip(speller, word)

Adds a word to the list of words that should be skipped (not checked) in this
spelling session.

speller The frame returned by the SpellDocBegin function.

word A string containing a word to skip.

return value Undefined; do not rely on it.

DISCUSSION

SpellSkip is used to add a word to a list of words that should be skipped
during the course of spell checking a document, but that should not be
added permanently to the user’s personal word list. SpellSkip processes the
word as described in “Processing of Words Passed to the Spell Checker”
(page 5-3). It then adds the word to the list of skipped words.

With regard to capitalization, SpellSkip stores the word exactly as written.

SpellLearn 5

SpellLearn(speller, word)

Adds a word to the user’s personal word list.

speller The frame returned by the SpellDocBegin function.

word A string containing a word to add to the word list.

return value Returns the word that was learned, so that you can pass
it to SpellUnlearn for implementing undo behavior. The
value nil is returned if the word was not added to the
personal word list because the list is full or some other
error occurred.

C H A P T E R 5

Spell Checker

5-8 Spell Checker Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

SpellLearn processes the word as described in “Processing of Words Passed
to the Spell Checker” (page 5-3). It then adds the word to the personal word
list. This will cause the word to be recognized as a correctly spelled word in
subsequent spell-check sessions.

When you pass this function an unknown capitalized word, or one that is all
uppercase letters, then SpellLearn displays a slip asking the user to confirm
that the word should be stored capitalized (or all uppercase). If the user taps
Yes, the word is stored as written. If the user taps No, the word is converted
to lowercase before being stored.

This notification slip can be disabled by setting the speller frame slot
dialogInhibit to a non-nil value before calling SpellLearn. In this case,
SpellLearn stores the word exactly as it is passed to it.

The personal word list has a limit of 1000 words. Once this limit is reached,
SpellLearn won’t store any more words and instead displays a notification
slip telling the user that the list is full and asking if they want to open the
personal word list in order to remove some words. The user can tap Yes to
open the word list. You can disable the display of this notification slip by
setting the speller frame slot dialogInhibit to a non-nil value before calling
SpellLearn. In this case, SpellLearn simply returns nil if the list is full.

SpellUnlearn 5

SpellUnlearn(speller, learnedword)

Removes a word from the user’s personal word list.

speller The frame returned by the SpellDocBegin function.

learnedword A string containing a word to remove from the word list.

return value Undefined; do not rely on it.

DISCUSSION

SpellUnlearn is typically used to implement undo operations. The following
example shows how SpellUnlearn is typically used:

learnedWord := SpellLearn(sp, word);
SpellUnlearn(sp, learnedWord);

C H A P T E R 5

Spell Checker

Spell Checker Reference 5-9
Preliminary Draft.  Apple Computer, Inc. 4/21/97

SpellUnlearn should be passed the word returned by the SpellLearn call, not
the original word that was passed to SpellCheck or SpellLearn.

If you pass SpellUnlearn a word that is not in the personal word list, there is
no effect.

C H A P T E R 5

Spell Checker

5-10 Spell Checker Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Summary of Spell Checker 5

Functions 5
SpellDocBegin()
SpellDocEnd(speller)
SpellCheck(speller, word)
SpellCorrect(speller, word)
SpellSkip(speller, word)
SpellLearn(speller, word)
SpellUnlearn(speller, learnedword)

6-1
Preliminary Draft.  Apple Computer, Inc. 4/21/97

C H A P T E R 6

Drawing and Graphics 2.1 6

This document describes changes to the shape-based graphics model in the
Newton 2.1 OS. This is the primary graphics model used by applications to
draw custom items.

This document only describes changes to the graphics model that existed in
the Newton 2.0 OS as described in Chapter 13, “Drawing and Graphics,” in
Newton Programmer’s Guide.

The following changes have made to this graphics model:

■ Support has been added for the new grayscale screens.

■ Color PICTs can now be rendered.

■ There are two new graphic shapes: ink and text box shapes.

■ Graphic shapes can include resize handles.

■ Bitmap shapes can now include masks.

■ Support has been added to anti-alias reduced black and white bitmaps.

■ There are a number of new utility functions, and a number of functions
have been altered.

Figure 6-0
Listing 6-0
Table 6-0

C H A P T E R 6

Drawing and Graphics 2.1

6-2 About Drawing and Graphics in the Newton 2.1 OS

Preliminary Draft.  Apple Computer, Inc. 4/21/97

About Drawing and Graphics in the Newton 2.1 OS 6

This section provides an overview of the graphics capabilities introduced by
the Newton 2.1 OS.

About Gray Tones and Patterns 6
The Newton 2.1 OS provides support for the sixteen shades of gray available
on the eMate 300 and the MesssagePad 2000 screens. There are constants
defined for these 16 gray tones. RGB (red-green-blue) values can also be used
to specify a color. The system maps these RGB values to gray tones when
needed.

You can also create patterns using these 16 grays. Two new types of patterns
have been added, gray patterns and dithered patterns, in addition to the
black and white patterns available on earlier systems. A dithered pattern is a
1-bit pattern with an associated foreground and background color. It is like
an old black and white pattern except that any two gray tones can be used. A
gray pattern is a pattern containing any number of gray tones.

These gray tones and patterns can be used in graphic shapes, text, pictures,
and as a view’s fill, frame, or line pattern. Ink and ink text however are
always black.

About Gray Pictures 6
The Newton 2.1 OS can render color PICTs in grayscale. Previous versions
could render only black and white PICTs. While the Newton 2.1 OS can
process PICTs in up to 32-bit colors, these objects are unnecessarily large. You
can save package space by using a graphics program on the desktop machine
to convert the PICT to 16 grays using the standard 4-bit palette with.

A PICT specifies its colors as indices to a color table. When NTK or the
Newton OS creates a picture, it uses a default a color table. By default the
indices are used as the values for the gray tones. The value 0 is white,

C H A P T E R 6

Drawing and Graphics 2.1

About Drawing and Graphics in the Newton 2.1 OS 6-3
Preliminary Draft.  Apple Computer, Inc. 4/21/97

subsequent values are evenly spaced up to black. Including a color table
makes the picture larger, and draw slower.

Note

The RGB values in a color PICT are not modified when
rendering it in grays. However, the system only writes and
creates PICTs in gray tones. This means that if the user
creates a new picture from a color one, the new picture will
be defined in gray tones. For example, if a color picture is
downloaded from a desktop machine to a Newton device,
resized or otherwise edited, and then uploaded to the
desktop, it will appear in gray on the desktop machine. ◆

About Gray Bitmaps (Pix Families) 6
A new data structure called a pix family has been introduced in the Newton
2.1 OS. A pix family is a group of one or more bitmaps at various bit depths.
The system picks the most appropriate image to display on the current
hardware. A pix family can be backwards compatible if 1-bit data is included.

Note

Currently support exists for creating a pix family only
from the Mac OS version of NTK. Future versions of
WinNTK will make pix families. ◆

The term “bitmap” is still used however to refer to the graphic shape
produced from a pix family with MakeShape. Bitmaps of a 1, 2, an 4-bit depths
can also be created with the MakeBitmap function.

Pix families and bitmap shapes can include a mask. The mask is used when
the bitmap is rendered in the modeMask transfer mode. The mask is a 1-bit
image used to “punch a hole” in the background before the regular image is
rendered. Figure 6-1 illustrates the how a mask is used to punch a hole in the
background.

C H A P T E R 6

Drawing and Graphics 2.1

6-4 About Drawing and Graphics in the Newton 2.1 OS

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Figure 6-1 The effect of a mask for a pix family

WARNING

You must not use the MungeBitmap function with the
'rotateLeft, 'rotateRight, or 'flipHorizontal options, the
source bitmap is destructively replaced with garbage. You
can still use the 'rotate180 and 'flipVertical, however. ◆

C H A P T E R 6

Drawing and Graphics 2.1

About Drawing and Graphics in the Newton 2.1 OS 6-5
Preliminary Draft.  Apple Computer, Inc. 4/21/97

About Gray Extras Drawer Icons 6
Gray icons are added to a part in the new part frame slot iconPro. Newton
1.x and 2.0 OS use the icon slot. The 2.1 OS displays the icon in the iconPro
slot, if there is one, otherwise it displays the icon in the icon slot. The format
of the icon in the iconPro slot is differs from that of the icon in the icon slot.
The iconPro slot contains two pix families, for normal and highlighted
versions of the icon. The highlighted version of the icon is shown when the
icon is selected.

For parts without an iconPro slot, the Newton 2.1 OS uses the icon slot.
These icons are highlighted by xor’ing the mask as in Newton 1.x and 2.0 OS,
since these icons do not have a highlighted version. However, when
displaying old icons in the button bar, the highlighting effect is simply to
invert the text label. The xor’ing doesn't work properly over the non-white
background of the button bar. Extras Drawer icons should contain a mask for
this reason. The mask should be slightly larger than the icon image to
provide a vignette effect when on an non-white background.

NTK 1.6.4 provides a special editor for creating gray form part (application)
icons. You must do this programmatically for icons of other parts with the
NTK 1.6.4 function MakeExtrasIcons. See “Creating Gray Extras Drawer
Icons” (page 6-15).

Note

Currently support exists for creating gray Extras Drawer
icons only from the Mac OS version of NTK. Future versions
of WinNTK will make gray icons. ◆

About Ink Shapes 6
The new ink shapes, created by MakeInk, allow you to treat ink as you would
any other graphic shape in the system. Ink objects can now be drawn, stored
in a shape array, hit tested, drawn in different styles, and so on, with all the
functions that manipulate graphic shapes.

C H A P T E R 6

Drawing and Graphics 2.1

6-6 About Drawing and Graphics in the Newton 2.1 OS

Preliminary Draft.  Apple Computer, Inc. 4/21/97

About Text Box Shapes 6
The new text box shape, created by MakeTextBox, provide support for
multi-line text shapes. Single line text shapes have been available since the
original version of the Newton OS. With the new text box shapes you specify
a bounding box and a string, and the system wraps the text at word
boundaries, clipping the text if it spills out of the bounding box. An example
of a text box shape is shown in Figure 6-7 on page 6-20.

About Gray Text 6
Support has been added for gray text in two ways. There is a new font spec
frame slot named color which specifies the gray tone to use when drawing
text. For more information on font spec frames, see “Using Fonts for Text and
Ink Display” (page 8-17) in Newton Programmer’s Guide.

There is also a new style frame slot textPattern that is used to draw text
within a graphic shape. If the style frame does not contain a textPattern slot,
text is drawn in the tone specified by the fillPattern slot.

About Selection Handles 6
Selection handles are small squares on each corners of a graphic shape’s
bounding box, these are added by including a selection slot in the style
frame. These are commonly used in graphics software packages; see
Figure 6-2. The system can draw these handles, and supports hit testing of
taps on these handles. The system does not, however, perform any action in
response to the user’s tap on a selection handle; responding to such a tap is
the application’s responsibility.

Figure 6-2 An oval shape with selection handles

C H A P T E R 6

Drawing and Graphics 2.1

About Drawing and Graphics in the Newton 2.1 OS 6-7
Preliminary Draft.  Apple Computer, Inc. 4/21/97

About Anti-Aliasing 6
When a black and white picture is reduced in size, the resulting image will
often have a jagged look. This jagged effect is called aliasing. Anti-aliasing is
a technique to overcome this effect, by rendering a reduced picture in gray
tones.

For example, consider a picture that is being reduced to half its size. The four
pixels at the top left corner of the picture are now going to be represented by
a single pixel. These four pixels could look like those shown in Figure 6-3.

Figure 6-3 Four black and white pixels

If these pixels had been all black, it would make sense to render them with a
single black pixel. But since these four pixels are not all black (or all white),
rendering them as a single black or a single white pixel, creates a picture
with a jagged, aliased, look. This can be overcome by rendering these four
pixels as a single pixel in a tone of gray.

Support has been added to protoImageView to automatically anti-alias
reduced black and white bitmaps. The built-in fax viewer, for example, uses
protoImageView.

You may also anti-alias monochrome bitmaps with the new view method
GrayShrink. The GrayShrink method was used to anti-alias the text on
Figure 6-4 (page 6-8).

C H A P T E R 6

Drawing and Graphics 2.1

6-8 About Drawing and Graphics in the Newton 2.1 OS

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Figure 6-4 The anti-aliasing effect on a bitmap that has been reduced by 50%

Compatibility 6
The PostScript driver in Newton OS versions prior to 2.1 substituted actual
gray tones for dithered patterns such as vfGray, vfLtGray, etc. This
substitution is no longer performed, so gray views that previously printed
fine might now look awkward in black and white dots.

Text is always drawn in black in Newton 1.x and 2.0 OS. A new style frame
slot textPattern has been added. Furthermore, if DrawShape draws text
without a textPattern slot, it is drawn in the tone specified by fillPattern.
This second change can cause compatibility problems, text in a shape array
drawn with a vfWhite fillPattern, for example, is displayed in Newton 1.x
and 2.1 OS, but the text is not shown in Newton 2.1 OS.

The following functions are new to Newton 2.1 OS: FindShape,
GetMaskedPixel, GetBlue, GetGreen, GetPointsArrayXY, GetRed, GetTone,
view:GrayShrink, IsEqualTone, MakeInk, MakeTextBox, MungeShape, PackRGB, and
PictToShape.

The following functions have been changed in Newton 2.1 OS:
GetStrokePointsArray, MakeBitmap, and MakeShape.

C H A P T E R 6

Drawing and Graphics 2.1

Using Drawing and Graphics in the Newton 2.1 OS 6-9
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Using Drawing and Graphics in the Newton 2.1 OS 6

This section describes how to use the programmer’s interface to the Newton
drawing engine.

Specifying Shades of Gray 6
The following constants are defined which specify 4-bit grayscale values:

kRGB_Gray0, kRGB_Gray1, kRGB_Gray2, ... , kRGB_Gray15

Black is kRGB_Gray15, and can also be referred to by the constant kRGB_Black.
White is kRGB_Gray0, for which the constant kRGB_White is also defined. These
values can be used anywhere a color needs specifying, in a graphic shape, in
a font spec frame, and as a view’s fill, frame, or line pattern. The sixteen gray
tones are shown in Figure 6-5.

Figure 6-5 The 4-bit grayscale palette

The constant kRGB_16GrayIncrement is also quite useful. This constant equals
the difference between two gray tones. For example, the following
expression evaluates to true:

kRGB_Gray3 = (3 * kRGB_16GrayIncrement) + kRGB_Black;

C H A P T E R 6

Drawing and Graphics 2.1

6-10 Using Drawing and Graphics in the Newton 2.1 OS

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Specifying RGB Triplets 6

You can specify a gray tone as an RGB (red-green-blue) triplet. These are
mapped to gray tones at run time. They can be used anywhere the
kRGB_GrayXX values are used. RGB triplets are represented as packed integers.

There are a number of utility functions provided to deal with packed RGB
integers:

■ PackRGB takes three 16-bit integers (that is, integers in the range [0,65535])
specifying the red, green, and blue components, and returns a packed
RGB integer. The following example uses this function:

myView.viewFillPattern := PackRGB (0x8888, 0xFFFF, 0x21AA);

■ GetTone takes a packed RGB integer and returns the tone of gray the RGB
triplet maps to. It is this gray tone that is displayed on the screen. For
example, the following two expressions evaluate to true:

0 = GetTone(PackRGB (0xFFFF, 0xFFFF, 0xFFFF)); //white
1 = GetTone(PackRGB (0xFFFF, 0xCCCC, 0xFFFF)); //a very light gray

■ IsEqualTone takes two packed RGB integers and returns true if they map
to the same gray tone. The following code illustrates the use of this
function:

IsEqualTone(PackRGB(0,0,0), PackRGB(2,7,88)); // returns true
IsEqualTone(PackRGB(0,0,0), PackRGB(2000,7000,8800));// returns nil

■ GetRed, GetGreen, and GetBlue take a packed RGB triplet and return the
relevant color component as an integer in the range [0,65535]. The
following example illustrates the use of one of these functions:

local thePackedInt := PackRGB(0, 0x1111, 0xFFFF);
GetBlue (thePackedInt); // this returns an integer close to 0xFFFF

Note

GetRed(PackRGB(r,g,b)) might not return r. All that is
guaranteed is that the return value of this function call
is an integer close to r. ◆

■ UnPackRGB takes a packed RGB triplet and returns a frame with red, green,
and blue slots. This function is provided by the NTK environment, and is

C H A P T E R 6

Drawing and Graphics 2.1

Using Drawing and Graphics in the Newton 2.1 OS 6-11
Preliminary Draft.  Apple Computer, Inc. 4/21/97

thus available at build time only. The following example illustrates the use
of this function:

UnPackRGB(PackRGB(r,g,b)); //returns integers close to r, g, and b

Using Patterns, Gray Patterns, and Dithered Patterns 6

The following sections provide information about the three types of patterns
that can be drawn. You should read “Black and White Patterns” even if you
want to create one of the other patterns.

Black and White Patterns 6

A black and white pattern is specified as a 8-byte binary object of class
'pattern, representing an 8x8 bitmap. The system has five built-in patterns,
which you can reference through the constants vfWhite, vfLtGray, vfGray,
vfDarkGray, and vfBlack. You may also define your own patterns.

To create a pattern, use the NTK function MakeBinaryFromHex. It takes a class
symbol and a sting with an even number of hex digits, each set of two digits
defining a byte in the binary object.

The following example creates a simple striped pattern, and stores it in a
constant, since MakeBinaryFromHex is available at build-time, but not at
run-time):

DefineGlobalConstant ('kMyBlackAndWhitePattern,
MakeBinaryFromHex ("AAAAAAAAAAAAAAAA", 'pattern));

Each A has the binary representation 1010, making for the following 8x8
bitmap:

10101010
10101010
10101010
10101010
10101010
10101010
10101010
10101010

C H A P T E R 6

Drawing and Graphics 2.1

6-12 Using Drawing and Graphics in the Newton 2.1 OS

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Gray Patterns 6

Gray patterns are binary objects with the class 'grayPattern. A gray pattern
consists of an 8x8 pattern of pixels, each of which is specified as an RGB
triplet. Each color component is specified with two bytes, making for 6 bytes
per pixel. You do not, however, need to specify all 64 RGB triplets. The
following rules are used when a gray pattern has less than 64 pixels:

■ If there are less than 8 pixels: the defined pixels are repeated until an 8
pixel line has been completed. This line is repeated 8 times.

■ Otherwise, the pixels are divided into 8 pixel lines, discarding any left
over pixels. These lines are repeated as needed to create an 8 line pattern.

The following example creates a 1-pixel pattern in a dark tone of gray:

DefineGlobalConstant ('kMyOnePixelGrayPattern,
MakeBinaryFromHex ("AAAAFFFF6666" , 'grayPattern));

This next example creates a striped pattern as in “Black and White Patterns”
(page 6-11), using 2 pixels in different tones of gray:

DefineGlobalConstant ('kMyTwoPixelGrayPattern,
MakeBinaryFromHex ("999999999999555555555555", 'grayPattern));

Note

A gray pattern can be a very large object. Specify only as
much of a pattern as you need, and try to keep your patterns
simple. With a simple pattern you frequently can take
advantage of the duplication done by the system when less
than 64 pixels are defined. Also consider using a dithered
pattern if you only need two tones of gray. A dithered
pattern requires about as much memory as a gray pattern
with five pixels defined. ◆

Dithered Patterns 6

If you need a two-toned pattern, you can use the 'ditherPattern class to
create a “black and white” pattern, and assign one tone of gray to the “black”
pixels, and another tone to the “white” pixels. A dithered pattern is defined
as a frame of the following format:

C H A P T E R 6

Drawing and Graphics 2.1

Using Drawing and Graphics in the Newton 2.1 OS 6-13
Preliminary Draft.  Apple Computer, Inc. 4/21/97

{
class: 'ditherPattern,
pattern: aBlackAndWhitePattern, // a 'pattern (e.g. vfGray)
foreground: kRGB_Gray0, // kRGB_Gray0 through kRGB_Gray15
background: kRGB_Gray15, // kRGB_Gray0 through kRGB_Gray15

}

The pattern slot contains a black and white pattern object as described in
“Black and White Patterns” (page 6-11); this includes the built-in black and
white patterns of the vfGray family. The foreground slot defines the tone of
gray of the black pixels (the 1’s), and the background slot defines the tone of
the white pixels (the 0’s).

The MakeDitheredPattern function creates frames of this format. You should
use this function instead of creating your own frame, as this ensures that the
frame map is shared.

The following example creates the striped black and white pattern with two
shades of gray, this pattern has fatter stripes than the one in “Black and
White Patterns” (page 6-11):

DefineGlobalConstant ('kMyStripedBWPattern,
MakeBinaryFromHex ("F0F0F0F0F0F0F0F0", 'pattern));

DefineGlobalConstant ('kMyDitheredPattern ,
MakeDitheredPattern(kMyStripedBWPattern, kRGB_Gray3, kRGB_Gray9));

Creating Gray Text 6
There are a few ways in which text can be drawn in gray tones. A new font
spec frame slot named color has been added. This slot can be set to any gray
tone, and used anywhere a font spec frames are used, including within a
graphic shape’s style frame’s font slot.

A graphic shape’s style frame can also contain a new slot, textPattern. If this
slot is present, text in text shapes will be drawn in the specified tone or
pattern. If this slot is not present, text is drawn in the tone specified by the
fillPattern slot. (Note that it is the fillPattern slot, and not the penPattern
slot that is used.)

Text shapes are always drawn in black on Newton 1.x and 2.0 OS.

C H A P T E R 6

Drawing and Graphics 2.1

6-14 Using Drawing and Graphics in the Newton 2.1 OS

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Importing Color PICTs from the Mac OS Version of NTK6
You can use the Mac OS version of NTK to import PICTs into your package
as either a picture object or as a pix family. The following sections describe
what you can do with a picture object or pix families.

Creating Graphic Shapes from Picture Objects 6

A picture object, sometimes called a Newton PICT, is an object that consists
of primitive drawing commands. It is basically the same data structure as a
Mac OS PICT. In most cases, a picture object is smaller than a pix family, but
may draw slower.

You can incorporate a picture object in your package using the existing NTK
functions GetResource and GetNamedResource. Once a picture object has been
included in a package you can render it by converting it to a graphic shape.
16 and 32 bit PICTs can only be imported with these two functions. You
cannot create a pix family from such a PICT.

There are two ways to transform the picture object into a graphic shape. You
can use the existing function MakeShape, or the new function PictToShape.
These functions use different algorithms to transform the picture object to a
shape. MakeShape returns a single picture shape, which is basically a wrapper
around the PICT. PictToShape on the other hand, returns an array of shapes
derived from the PICT’s own drawing commands.

Note

The PICT itself could contain either drawing commands,
such as “draw a circle here,” “fill this rectangle in black,” or
it could contain bitmap-based data. If the PICT contains
drawing commands, PictToShape creates an array of shapes
based on those commands, which is generally a smaller
object. However if the PICT contains bitmap-based
information, use of these two functions is basically
equivalent. ◆

Using Pix Families 6

You can create a pix family from a PICT by using either the picture slot editor
in NTK, or programmatically with the NTK function MakePixFamily.

C H A P T E R 6

Drawing and Graphics 2.1

Using Drawing and Graphics in the Newton 2.1 OS 6-15
Preliminary Draft.  Apple Computer, Inc. 4/21/97

MakePixFamily replaces the deprecated function GetPictAsBits. Pix families
can be used anywhere bitmaps are allowed. They can be rendered when
used as the value of the icon slot of a clPictureView, or in the pickItems array
of a popup menu item, etc. A pix family can be drawn directly on the screen
with the CopyBits function. You can create a bitmap shape from the pix
family with MakeShape.

The picture slot editor is provided for the icon slot of clPictureViews. It
creates a pix family. For more information on this slot editor, see “Picture Slot
Editor” (page A-1). The existing NTK function GetPictAsBits, has not been
modified, and returns an old-style black and white bitmap. If you want to
create a pix family programmatically, you must use the new NTK function
MakePixFamily.

Creating Gray Extras Drawer Icons 6
Gray icons are created as a pair of normal and a highlighted icons. Each of
these icons is a pix family. Gray icons are stored in a part frame’s iconPro
slot. To remain compatible with previous system versions, the part must also
contain an icon slot with black and white data.

Note that icons in the button bar are clipped if they are too large. Also, since
the button bar is gray, you must include a mask with your icon, The mask
should be lightly larger than the icon. The size of the mask must be no larger
than 29x32, and the size of the regular icon must be less than 27x30. For more
information on how to create icons, see Chapter 5, “Icons,” in Newton 2.0
User Interface Guidelines.

Note

The size of all PICTs in a pix family must be identical. That
is, they must be selected with the same size selection
rectangle. An icon’s mask should larger in the sense of
having a larger image, that is the mask should heave more
on bits than the icon has non-white pixels. ◆

Icons for form parts (application parts) can be created with NTK’s
application icon editor. For information on this editor, see “Application Icon
Editor” (page A-3). For other kind of parts (auto parts, store parts, etc.) you
must create them programmatically with the MakeExtrasIcons function, and
add them to your part frame with the SetPartFrameSlot function. The code

C H A P T E R 6

Drawing and Graphics 2.1

6-16 Using Drawing and Graphics in the Newton 2.1 OS

Preliminary Draft.  Apple Computer, Inc. 4/21/97

example in Listing 6-1 shows how to assign an icon to a part
programmatically.

Listing 6-1 Code to add an icon and iconPro slot to a part frame

// example giving an icon to a non-form part - works for 2.0 and
// later devices (NTK's Project Setting handles this for form parts)

OpenResFile(HOME & "foo.rsrc");

extrasIcons := MakeExtrasIcons([
{unhilitedRsrcSpec: "foo.bw", //b&w normal icon
hilitedRsrcSpec: "foo.bw.hilited", //b&w hilited icon
bitDepth: 1},
{unhilitedRsrcSpec: "foo.gray", //gray normal icon
hilitedRsrcSpec: "foo.gray.hilited", //gray hilited icon
bitDepth: 4},

],
"foo.mask", //mask for normal icons
"foo.hilited.mask" //mask for hilited icons

);

SetPartFrameSlot('iconPro, extrasIcons.iconPro);
SetPartFrameSlot('icon, extrasIcons.icon);
SetPartFrameSlot('text, "foo"); // must have a text slot or the part

//is ignored by the Extras Drawer

CloseResFile();

Anti-Aliasing Monochrome Bitmaps 6
There are two ways in which black and white bitmaps can be anti-aliased
when being reduce in size. Bitmaps in protoImageView views are anti-aliased
automatically if the view contains a drawGrayScaled slot set to true. You can
also anti-alias bitmaps programmatically with the new GrayShrink function.

IMPORTANT

The image slot of a protoImageView can contain a variety of
objects. However, you may only set the drawGrayScaled slot
to true if the image slot contains a bitmap shape. ◆

C H A P T E R 6

Drawing and Graphics 2.1

Using Drawing and Graphics in the Newton 2.1 OS 6-17
Preliminary Draft.  Apple Computer, Inc. 4/21/97

GrayShrink accepts two arguments, the bitmap to draw and a style frame.
The style frame must contain a transform slot, and the transformation must
represent a reduction in size either horizontally or vertically. GrayShrink
renders the bitmap on the screen anti-aliased. You use it instead of using a
combination of MakeShape and DrawShape. If GrayShrink is not passed a 1-bit
bitmap, and a style frame with a transform slot representing a reduction on
either axis, the bitmap is not anti-aliased, but still drawn on the screen.

Note

The anti-aliasing algorithm is somewhat time expensive. You
should not use GrayShrink indiscriminately. ◆

Gray Transfer Modes 6
The transfer modes are used to specify how a graphic object is drawn onto an
existing bitmap, usually the screen. The system combines the two images at
the pixel level, combining the images with the operation specified in the
transfer mode. The transfer mode constants are described in “Transfer Mode
Constants” (page 6-24).

The effect of the different transfer modes is illustrated in Figure 6-6.

Figure 6-6 Two bitmaps combined with the different transfer modes

The value of the individual pixels is determined by first looking up the value
in the color lookup table. If the default color table is used, no lookup is

C H A P T E R 6

Drawing and Graphics 2.1

6-18 Using Drawing and Graphics in the Newton 2.1 OS

Preliminary Draft.  Apple Computer, Inc. 4/21/97

required as the indices and the tones are identical. Secondly, the source
bitmap must be changed to the bit depth of the destination bitmap. Then the
source bitmap is scaled, if necessary. Finally the individual pixels are
combined as indicated by the transfer mode.

In most cases, you do not need to worry about how it is that the source
bitmap is scaled (in both size and bit depth). Some of the transfer modes,
modeXor and modeBic, operate by a bitwise combination of the pixel values.
These transfer modes are most useful when using black and white sources,
and have unexpected results when combining grays. Using modeBic is
especially useful for drawing white text over a black or gray background.

If you do wish to use these transfer modes with two shades of gray, and you
want to understand what the result will be, you must consider the effect of
scaling the source bitmap. This information is provided in “How the System
Scales Bitmaps.”

How the System Scales Bitmaps 6

Before two bitmaps can be merged, the two bitmaps must be made to agree
in bit depth, and the source bitmap may need to be scaled. The source
bitmap is always the one to be shrunk or enlarged to match the destination
bit depth.

If the source bitmap needs to be shrunk in size, it is partitioned into as many
groups of pixels as are desired, and the darkest pixel in each source group is
used. For example, if a 4-bit scan line contains the indices 0x56 34 A2 C8...,
and is being shrunk 50%, the indices 0x64AC... are used. The darkest of each 2
pixel group is used. Since the following scan line of source data will also be
combined with the current line, this algorithm is repeated, and the darkest of
each 2x2 block of source pixels is mapped to each destination pixels.

When the source bitmap is expanded to fit a larger destination bitmap, pixels
are repeated as necessary. For example if the same 0x56 34 A2 C8... scan line
is being increased horizontally by 100%, the individual pixels are simply
repeated to produce 0x55663344AA22CC88...

When the bit depth of the source bitmap is reduced or increased, it is
necessarily changed by a power of 2. If the bitmap is being expanded, the
pixel’s bit patterns are simply repeated. For example if a pixel with the 2-bit
binary value 01 is being increase to 4-bits, the zero is repeated and the one is

C H A P T E R 6

Drawing and Graphics 2.1

Using Drawing and Graphics in the Newton 2.1 OS 6-19
Preliminary Draft.  Apple Computer, Inc. 4/21/97

repeated to produce the binary value 0011. The 2-bit pixel 01 is expanded to
the 8-bit pixel 00001111.

If a bitmap is being reduced in bit depth, the high bits of each pixel is used.
For example, an 8-bit scan line 0x08 17 28 A5... is reduced to the four-bit scan
line 0x012A... As a further example, the 8-bit pixel 0xA2 (binary 10100010) is
reduced to the 4-bit pixel 1010 and to the 2-bit pixel 10.

Once the two bitmaps have been made to agree in bit depth and size, the
affect of the transfer modes can be established. These are described in
“Transfer Mode Constants” (page 6-24).

Using Selection Handles 6
The new style frame slot selection signals that a shape contains selection
handles. This slot must contain an integer, which is the size in pixels of the
resize handles. It is recommended that the selection slot be set to an even
integer, it tends to look better. DrawShape draws the selection handles around
shapes, and FindShape can be used for hit testing on these handles.

Creating Ink and TextBox Shapes 6
Two functions have been added to create ink and text box shapes: MakeInk
and MakeTextBox. MakeInk takes five parameters, an ink data object and four
integer coordinates for the bounding box. MakeTextBox also takes five
parameters, a string and four integers for the bounding box.

The following code example illustrates the use of MakeTextBox, producing the
shape displayed in Figure 6-7:

local tb := MakeTextBox ("Note how text is automatically wrapped at
word boundaries, and clipped at shape bounds.", 0, 0, 150, 123);
:DrawShape (tb,nil);

C H A P T E R 6

Drawing and Graphics 2.1

6-20 Using Drawing and Graphics in the Newton 2.1 OS

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Figure 6-7 A textBox

The code example in Listing 6-2 illustrates the use of the MakeInk function.
This code sample is a method of a clEditView that creates a shape array with
all the ink children of the view.

Listing 6-2 Function to retrieve ink shapes from a clEditView

myEditView.CollectInkShapes := func()
begin

local kids := :ChildViewFrames();
local inkShapes := [];

foreach child in kids do
if child.ink then
begin

local bounds := child.viewBounds;
AddArraySlot(inkShapes,

MakeInk(child.ink,bounds.left,bounds.top,
 bounds.right, bounds.bottom));

end;
inkShapes;

end;

New Graphic Shape Utility Functions 6
This section defines a few new utility functions.

C H A P T E R 6

Drawing and Graphics 2.1

Using Drawing and Graphics in the Newton 2.1 OS 6-21
Preliminary Draft.  Apple Computer, Inc. 4/21/97

The FindShape Function 6

The new FindShape function has been provided to overcome some of the
deficiencies of HitShape. Since changing HitShape would break existing code,
this new function has been introduced. HitShape is now a deprecated
function, use FindShape from now on.

This new function differs from HitShape in the following ways:

■ Shapes are found from front to back instead of back to front. If two shapes
overlap and you call HitShape with a point in their intersection, the
backmost shape was returned. FindShape returns the frontmost shape.

■ Support is provided for hit testing resize handles.

■ FindShape takes a style frame as an argument so you can use it the same
way you do DrawShape. If you draw a rectangle on the screen with a style
frame that moves it 20 pixels to the right, you are probably interested in
whether a pen tap is within the rectangle where it is drawn on the screen,
not in its original position.

■ If a shape has no fill pattern the tap “falls through” and will miss, or hit a
shape below it.

■ There is “slop” built into the hit testing so taps a few pixels from a shape
still hit the shape.

■ The new ink and text box shapes are supported.

The GetPointsArrayXY Function 6

The GetPointsArray function has existed since the Newton 1.0 OS. It accepts a
unit, which is passed in to a ViewWordScript, ViewStrokeScript, or
ViewGestureScript method, and returns an array of points in that unit. It
returns the points in (y,x) order. That is, the first array element is the first
point’s y coordinate, the second is its x coordinate, the third is the next
point’s y coordinate, and so on. The new function GetPointsArrayXY does the
same thing, only that the coordinates are in (x,y) order.

C H A P T E R 6

Drawing and Graphics 2.1

6-22 Using Drawing and Graphics in the Newton 2.1 OS

Preliminary Draft.  Apple Computer, Inc. 4/21/97

The MungeShape Function 6

The MungeShape function can flip a shape or rotate it 90˚ to the right. The
MungeBitmap function has existed since Newton 2.0 OS, it similarly flips and
rotates bitmaps. The following code example illustrates the use of the
MungeShape function:

//this is in a ViewDrawScript
local oval := MakeOval (5,5,100,25); //a short and fat oval
:DrawShape(oval, {fillPattern: kRGB_Gray3});

//now draw it tall and skinny on top of the original oval
MungeShape(oval, 'rotateRight, nil);
:DrawShape(oval, {fillPattern: kRGB_Black, transferMode: modeXor});

The above code generated Figure 6-8 on page 6-22.

Figure 6-8 Overlapping ovals

The GetMaskedPixel Function 6

GetMaskedPixel augments the existing function PtInPicture. PtInPicture
determines whether a specific point is a black pixel in a black and white
bitmap. GetMaskedPixel returns the value of a pixel in a color picture. This
function considers the effect of a mask.

C H A P T E R 6

Drawing and Graphics 2.1

Drawing and Graphics Reference 6-23
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Changes to Existing Graphic Shape Functions 6

MakeBitmap Accepts a Depth Option 6

The third parameter to the MakeBitmap function is an options frame. This
frame may now include a depth slot containing an integer. This integer
represents the bit depth of the bitmap; allowable values are 1, 2, and 4.

MakeShape Makes Bitmap Shapes With Masks 6

In previous version of the Newton OS, bitmap objects could contain masks,
but not bitmap graphic shapes. You can now create a bitmap graphic shape
with a mask with the MakeShape function.

An additional slot, mask, is added to the bitmap shape if MakeShape is passed
a pix family which contains a mask. This mask is used when the bitmap
shape is drawn with the transferMode set to modeMask.

GetStrokePointsArray Filters More Points and Swaps
Coordinates 6

The GetStrokePointsArray function has been modified in two ways. It can
now filter more points by requiring a minimum distance between adjacent
points. You can now also specify whether points’ coordinates are returned in
(y,x) order or (x,y) order.

Drawing and Graphics Reference 6

Constants 6
Constants have been added as values for the sixteen supported gray tones.
The existing constants used for transfer modes have new interpretations.

C H A P T E R 6

Drawing and Graphics 2.1

6-24 Drawing and Graphics Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Gray Tone Constants 6

The following gray tone constants are defined:

kRGB_Gray0, kRGB_Gray1, ... , kRGB_Gray15

These values define the 16 supported gray tones shown in Figure 6-5
(page 6-9). The constants kRGB_Black and kRGB_White are also defined and
equal kRGB_Gray15 and kRGB_Gray0, respectively.

The constant kRGB_16GrayIncrement equals the difference between two gray
tones. For example, the following expression evaluates to true:

kRGB_Gray3 = (3 * kRGB_16GrayIncrement) + kRGB_Black;

Transfer Mode Constants 6

The transfer mode constants are used as values to the style frame slot
transferMode, and the view slot viewTransferMode. For more information on
how these are used, see “Gray Transfer Modes” (page 6-17).

modeCopy The source pixel is drawn over the destination pixel.

modeOr Non-white pixels are drawn over the destination pixels,
but the destination pixels under white pixels are left
untouched.

modeXor The pixels are combined with a bitwise XOR, exclusive
or, operation. This can create unexpected results when
used with mid-level grays. For example, the result of
combining a 0xA pixel (75% gray) with a 0x7 pixel (about
50% gray) is Bxor(0xA,0x7) = 0xD which is a dark gray.
This mode is most often used with a black and white
source image. The black pixels invert the destination
pixels and the white pixels have no effect on the
destination bitmap.

modeBic The pixels are combined with a bitwise BIC, bit clear,
operation. The BIC operation’s truth table is show in
Table 6-1 (page 6-25).

This mode is most useful when using a black source
image to erase the destination bitmap. It is also useful
when drawing white text on a dark background, set the

C H A P T E R 6

Drawing and Graphics 2.1

Drawing and Graphics Reference 6-25
Preliminary Draft.  Apple Computer, Inc. 4/21/97

textPattern or fillPattern slots for the text to black. It
can have strange effects when combining two gray
pixels. For example, source 0xA and destination 0xB
produce 0x1, but source 0xA and destination 0x5 produce
0x5.

modeNotCopy The source image is inverted and then merged with
destination bitmap using modeCopy.

modeNotOr The source image is inverted and then merged with
destination bitmap using modeOr.

modeNotXor The source image is inverted and then merged with
destination bitmap using modeXor.

modeNotBic The source image is inverted and then merged with
destination bitmap using modeBic.

modeMask The bitmap’s mask is drawn with modeBic, then the
“normal” bitmap image is drawn in modeOr.

Table 6-1 Truth table for modeBic

Data Structures 6
The style frame has changed in Newton 2.1 OS.

Style Frame 6

Style frames, as used by the DrawShape and other functions, may contain the
following slots (new or changed slots are listed first):

Source Destination BIC

0 0 0

0 1 1

1 0 0

1 1 0

C H A P T E R 6

Drawing and Graphics 2.1

6-26 Drawing and Graphics Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Slot descriptions

textPattern New slot. The shade of gray to render text in. This slot
makes it possible to use the same style frame for an
array containing both non-text shapes and text rendered
with different tones. Possible values for this slot are the
constants specified in “Gray Tone Constants”
(page 6-24), or the return value of PackRGB.

selection New slot. The size of the selection handles in pixels. If
this slot is present selection handles are drawn in the
four corners of the shape bounds. The value is the size
of the handles; an even number is recommended as it
centers the handles best over the corners. The FindShape
function supports hit testing of these handles.

penPattern Changed slot. The pen pattern. Possible values for this
slot are the constants specified in “Gray Tone
Constants” (page 6-24), the return value of PackRGB, or a
pattern, gray pattern, or dithered pattern.
The Newton 2.0 OS draws text in a dithered pattern if a
gray pattern (such as vfGRay) is specified. The Newton
2.1 OS draws the text in the proper tone of gray when
kRGB_GrayXX constants, or a gray or dithered pattern are
used.

fillPattern Changed slot. The Newton 2.0 fills OS areas in a
dithered pattern if a gray pattern is specified. The 2.1 OS
fills the area in the proper tone of gray when
kRGB_GrayXX constants, or a gray or dithered pattern are
used. Possible values for this slot are the constants
specified in “Gray Tone Constants” (page 6-24), the
return value of PackRGB, or a pattern as defined in
“Patterns” (page 6-28).

font Changed slot. The font to use for drawing text. The
default is the font selected by the user in the Styles
palette. In Newton 2.1 OS, this slot can also contain a
color slot, which is ignored by earlier systems. The
color slot can contain a kRGB_GrayXX constant, or a
packed RGB integer as returned by PackRGB. See “Fonts

C H A P T E R 6

Drawing and Graphics 2.1

Drawing and Graphics Reference 6-27
Preliminary Draft.  Apple Computer, Inc. 4/21/97

for Text and Ink Display” (page 8-3) in Newton
Programmer’s Guide for details on specifying a font.

transferMode Changed slot. The way a drawing is merged with the
existing background. Specify one of these constants
listed in “Transfer Mode Constants” (page 6-24). The
default transfer mode is a split state: bitmap shapes and
text are drawn with a modeOr transfer mode, but other
items (geometric shapes, pens, and fill patterns) are
drawn with a modeCopy transfer mode.

penSize Exiting slot.The size of the pen in pixels. You can specify
a single integer to indicate a square pen of the specified
size, or you can specify an array giving the pen width
and height (for example, [1, 2]). This value is not used
for drawing text. The minimum and default pen size is
1. However, no frame will be drawn for a shape if
penPattern is set to vfNone (the default penPattern is
vfBlack).

justification Exiting slot. The alignment of text in the rectangle
specified for it. Specify one of the following symbols:
'left, 'right, 'center. The default value is 'left.

clipping Exiting slot. Specifies a clipping region to which all
drawing is clipped in addition to the default clipping.
The value of this slot can be a primitive shape, a region,
or an array of shapes (from which a new clipping region
is constructed automatically by the system). For more
information see “Controlling Clipping” (page 13-12) in
the Newton Programmer’s Guide.

transform Exiting slot. Used to offset or scale the shape. The value
of this slot is an array that can hold a coordinate pair or
a pair of source and destination rectangles. For more
information, see “Transforming a Shape” (page 13-13) in
the Newton Programmer’s Guide.

C H A P T E R 6

Drawing and Graphics 2.1

6-28 Drawing and Graphics Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Patterns 6

Three types of patterns are supported: patterns, gray patterns, and dithered
patterns.

Pattern 6

A pattern is a binary object containing an 8x8 bitmap of class 'pattern. The
constants vfWhite, vfLtGray, vfGray, vfDkGray, and vfBlack are patterns in the
ROM. For more information, see “Black and White Patterns” (page 6-11).

Gray Pattern 6

A gray pattern is a binary object of class 'grayPattern containing 1 or more
pixels in an 8x8 pixel map of class 'pattern. Each pixel is specified as an RGB
triplet. Two bytes are used per color component, making for 6 bytes per
pixel. For more information, see “Gray Patterns” (page 6-12).

Dithered Pattern 6

A dithered pattern is a frame with the following slots:

Slot description

class The symbol 'ditherPattern.
pattern A black and white pattern, see “Pattern” (page 6-28).
foreground A gray tone to use wherever the pattern in the pattern

slot contains an on pixel, such as one of the constants
listed in “Gray Tone Constants” (page 6-24).

background A gray tone to use wherever the pattern in the pattern
slot contains an off pixel, such as one of the constants
listed in “Gray Tone Constants” (page 6-24).

You should use the MakeDitheredPattern function to created dithered
patterns. This ensures that dithered pattern does not have its own frame
map. For more information, see “Dithered Patterns” (page 6-12).

C H A P T E R 6

Drawing and Graphics 2.1

Drawing and Graphics Reference 6-29
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Functions and Methods 6
This section describes functions which are new to the Newton 2.1 OS, and
older functions which have been changed in this OS release.

FindShape 6

FindShape(shape,x,y,style)

Indicates whether the point (x,y) lies in the specified shape if it were drawn
in the specified style.

shape The shape or array of shapes to test.

x The x coordinate of the point to be tested, in local (view)
coordinates. Note that GetPoints returns global
coordinates.

y The y coordinate of the point to be tested, in local (view)
coordinates. Note that GetPoints returns global
coordinates.

style A style frame to be applied to shape.

return value Returns nil if no shape is found, otherwise a frame with
the following slots:
path If shape is a single shape, then the

Boolean true. If shape is an array of
shapes, then a path expression to the
shape within the array.

vertex If the hit was not on a resize handle, this
slot is set to nil. If a handle was hit, this
slot contains an integer with the following
meaning:
0 = top-left corner
1 = top-right corner
2 = bottom-right corner
3 = bottom-left corner

C H A P T E R 6

Drawing and Graphics 2.1

6-30 Drawing and Graphics Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

This function replaces the HitShape function. While HitShape is still defined
in the ROM for compatibility reasons, you should use FindShape from now
on.

The shape and style parameters are intended to be used in the same manner
as in the DrawShape method. Style frames within a shape array in the shape
parameter are also taken into effect. This allows you to use the same code to
create shapes and style frames in both your ViewDrawScript (to pass to
DrawShape) as well as in your ViewClickScript (or wherever you call
FindShape from).

More than one shape in a shape array could encompass a point. In this case
the frontmost shape is returned. The frontmost shape is the one in a later
position in the shape array.

If a shape has no fill pattern, the hit “falls through” and will miss, or hit a
shape below it. Also, there is “slop” built into the hit testing; taps a few
pixels from a shape still hit the shape.

GetBlue 6

GetBlue (packedRGB)

Returns the value of the packedRGB argument’s blue component.

packedRGB A packed integer representation of an RGB color.

return value An integer in the range [0,65535].

SPECIAL CONSIDERATIONS

GetBlue(PackRGB(r,g,b)) might not return b. It is only guaranteed that this
function call will return an integer close to b.

GetGreen 6

GetGreen (packedRGB)

Returns the value of the packedRGB argument’s green component.

packedRGB A packed integer representation of an RGB color.

return value An integer in the range [0,65535].

C H A P T E R 6

Drawing and Graphics 2.1

Drawing and Graphics Reference 6-31
Preliminary Draft.  Apple Computer, Inc. 4/21/97

SPECIAL CONSIDERATIONS

GetGreen(PackRGB(r,g,b)) might not return g. It is only guaranteed that this
function call will return an integer close to g.

GetMaskedPixel 6

GetMaskedPixel(x, y, pixFamily) //Platform file function

Retrieves the value of a specific pixel within a pix family, taking into account
its mask.

x The x coordinate of the point to be tested, in local (view)
coordinates.

y The y coordinate of the point to be tested, in local (view)
coordinates.

pixFamily The pix family to test.

return value An integer, -1 if the (x,y) pixel location lies outside the
bounds of the pix family or if the mask is off at this
position, otherwise the integer value of the specified
pixel is returned (see below).

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kGetMaskedPixelFunc with (x, y, pixFamily);
 ◆

DISCUSSION

This function is similar to the existing PtInPicture function.

The value returned for a pixel that is actually within the pix family’s bounds
(and at an on position in the mask) depends on the bit depth of the pix
family image. For images with a bit depth of 1, 2, 4, and 8, the pixel will be
an index in the range [0, 2bit depth - 1]. For example, if the image has a bit
depth of 4, the value returned by the function would range from 0 to 15. If
the image has a bit depth of 16 or 32, the pixels will have a direct format, and
the function will return the direct RGB pixel value.

C H A P T E R 6

Drawing and Graphics 2.1

6-32 Drawing and Graphics Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

GetPointsArrayXY 6

GetPointsArrayXY(unit)

Returns an array of points extracted from the specified unit.

unit A unit passed to the ViewWordScript, ViewShapeScript,
ViewStrokeScript, and ViewGestureScript methods.

return value An array of points.

DISCUSSION

The array that this function returns consists of coordinate pairs describing
the points. The first element contains the x coordinate of the first point, the
second element contains the y coordinate, and so on. The existing function
GetPointsArray returns a similar array with the points in y,x order.
Coordinates are global; that is, they are relative to the upper-left corner (0, 0)
of the screen.

If the unit encapsulates multiple strokes, this function returns points from
the first stroke.

GetRed 6

GetRed (packedRGB)

Returns the value of the packedRGB argument’s red component.

packedRGB A packed integer representation of an RGB color.

return value An integer in the range [0,65535].

SPECIAL CONSIDERATIONS

GetRed(PackRGB(r,g,b)) might not return r. It is only guaranteed that this
function call will return an integer close to r.

C H A P T E R 6

Drawing and Graphics 2.1

Drawing and Graphics Reference 6-33
Preliminary Draft.  Apple Computer, Inc. 4/21/97

GetStrokePointsArray 6

GetStrokePointsArray(stroke, format)

Copies the data for all the points in an ink stroke into an array.

stroke A binary object representing an ink stroke; see “Stroke,
Word, and Gesture Units” (page 8-29) in Newton
Programmer’s Reference.

format An integer or frame specifying how to format the output

Possible integer values are:
0 Data in screen resolution. Filter out

duplicate points.
1 Data in screen resolution. Duplicate

points are allowed.
2 Data in tablet resolution. Filter out

duplicate points.
3 Data in tablet resolution. Duplicate points

are allowed.

For information on the screen vs. tablet resolution
distinction, see “Using Stroke Bundles” (page 10-42) in
Newton Programmer’s Guide.

If this parameter is a frame, it may contain the following
slots:
format Required. An integer, any of the integers

this parameter can accept if not supplying
a frame (listed above).

distance Optional. An integer, the minimum
distance between points.The default is 0.
Using a value of just 1 or 2 significantly
reduces the size of the array returned by
this function. This is handy, as you don't
have to munge through so much data if
you want to analyze a stroke yourself.
You can also create polygon views with
reasonable fidelity using significantly
fewer points. With values greater than 4,

C H A P T E R 6

Drawing and Graphics 2.1

6-34 Drawing and Graphics Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

the resulting polygon looks noticeably
different.

order Optional. One of the following symbols:
'xy or 'yx. The default is 'yx. This slot
controls the xy ordering of the points.
Normally, GetStrokePointsArray returns
the points in (y, x) order. If this slot has
the value 'xy, the points are returned in (x,
y) order.

return value An array of points. This array contains an even number
of elements, containing the x and y coordinates.
Normally the coordinates are returned in (y,x) order,
however you can control this through the order slot of
the format parameter.

COMPATIBILTY

The version of this function on Newton OS versions prior to 2.1 accepts only
an integer for the format parameter.

GetTone 6

GetTone(packedRGB)

Returns an integer representing the 4-bit gray tone corresponding to the
packedRGB value.

packedRGB A packed integer representation of an RGB color.

return value An integer in the range [0,15]; 0 is white and 15 is black.

GrayShrink 6

view:GrayShrink(bitmap, style)

Anti-aliases a 1-bit pix family and renders it on the screen.

bitmap A 1-bit pix family or bitmap graphic shape.

style A style frame, as used by DrawShape. This frame should
contain a transform slot representing a reduction in size,
either horizontally, vertically, or both. The transform

C H A P T E R 6

Drawing and Graphics 2.1

Drawing and Graphics Reference 6-35
Preliminary Draft.  Apple Computer, Inc. 4/21/97

slot should contain two bounds frames, i.e. not two
integers. You may pass nil for the source bounds frame,
in which case, bitmap’s bounds are used. You may also
pass nil for the destination bounds, in which case the
viewBounds slot is used.

return value Undefined, do not rely on what this method returns.

DISCUSSION

If bitmap is not 1-bit, or if style does not have a transform slot representing a
reduction in size, bitmap is still rendered on the screen, but not anti-aliased.

IsEqualTone 6

IsEqualTone(packedRGB1, packedRGB2)

Returns true when the values of its arguments map to the same gray tone.

packedRGB1 A packed integer representation of an RGB color.

packedRGB2 A packed integer representation of an RGB color.

return value Either true or nil.

MakeBitmap 6

MakeBitmap(widthInPixels, heightInPixels, optionsFrame)

Returns a blank (white) bitmap shape of the specified size.

widthInPixels Width of the bitmap shape.

heightInPixels Height of the bitmap shape.

optionsFrame An optional frame specifying additional characteristics
of the bitmap shape created by this method. It can
contain any of the slots specified here. If this frame is
not used, the value of the optionsFrame parameter must
be nil.
rowBytes Specifies the number of bytes per row of

the bitmap; use only for a data source that
creates scan lines longer than the default
value. An exMakeBitmapBadArgs exception
is thrown if the value of rowBytes is not a

C H A P T E R 6

Drawing and Graphics 2.1

6-36 Drawing and Graphics Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

multiple of 32 bits or is too narrow for the
bitmap’s width as specified by the
widthInPixels parameter. When no other
value is specified, this slot has the default
value BAND(widthInPixels + 31, -32) / 8.

depth Specifies a bit depth for the creation of
grayscale or color images. The value of
depth must be an integer describing the
number of bits per pixel, and it must be
one of the values 1, 2, or 4. This slot’s
default value is 1 when no other value is
specified.

resolution
Specifies high- or low-resolution images.
Like a pen size, the value of the
resolution slot may be an array or a
single value. If this value is an array, the
elements of the array specify the x and y
dimensions of the pixels comprising the
bitmap. If this slot stores a single value, it
specifies that the pixels are square, having
equal values for their x and y dimensions.
Applications that display or otherwise
manipulate bitmap documents (for
example, fax pages) need to use this slot
to control scaling functionality. This slot’s
default value is [72,72] when no other
value is specified.

store By specifying a store, the bitmap is
created as a VBO (virtual binary object).
To applications, VBOs appear to be
NewtonScript binaries, but they are
actually handled directly by the system,
using automatic compression and
decompression to allow these objects to be
much larger than the available heap
space. If you are going to create a bitmap,
and you know that it will ultimately wind

C H A P T E R 6

Drawing and Graphics 2.1

Drawing and Graphics Reference 6-37
Preliminary Draft.  Apple Computer, Inc. 4/21/97

up in a soup on a particular store, you can
increase the system efficiency by using
this slot to specify the store on which to
create the object.
If this slot is nil, the NewtonScript heap is
used, and the bitmap will not be a VBO.
You must limit the use of the
NewtonScript heap to small bitmaps only.
A n exception occurs in the event the
NewtonScript heap or store does not have
enough space for the bitmap.

companderName
When a VBO is written to the store, the
system uses a compander, or compression-
decompression utility. This slot is a string
that represents the name of the
compander to use when writing or
reading this bitmap from the store.
The default compander is
TPixelMapCompander, which is efficient for
monochrome images.
You can supply your own compander as a
protocol. If you don’t want to compress
the data when written out to the store you
would need to supply an appropriate
protocol. If you are not writing to the
store (default), then there is no
compression, no VBO, and the data is
written out to the frames heap.

 companderData
This slot is intended for optional
arguments that would be passed to the
compander. The default is nil.

return value A bitmap shape.

C H A P T E R 6

Drawing and Graphics 2.1

6-38 Drawing and Graphics Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

The origin of the bitmap returned is at (0,0); however, you can subsequently
use the OffsetShape function to modify the returned bitmap’s origin.

COMPATIBILTITY

Versions of this function prior to Newton 2.1 OS ignore a the depth slot in
optionsFrame.

MakeInk 6

MakeInk(inkdata,left, top, right, bottom)

Creates an ink shape in the specified bounds box.

inkdata The ink data object.

left The left boundary.

top The top boundary.

right The right boundary.

bottom The bottom boundary.

return value An ink shape.

DISCUSSION

This ink shape will work fine when passed to the various shape methods:
DrawShape, OffsetShape, IsPrimShape, ScaleShape, etc. HitShape however does
not work on these new objects. You must use the new function FindShape
(page 6-29) on these objects.

The bounds slot doesn't scale the ink, it just tells DrawShape where to place the
upper left corner. The shape is not clipped at its bounds.

SEE ALSO

For an example of using this function see “Creating Ink and TextBox Shapes”
beginning on page 6-19.

C H A P T E R 6

Drawing and Graphics 2.1

Drawing and Graphics Reference 6-39
Preliminary Draft.  Apple Computer, Inc. 4/21/97

MakeShape 6

MakeShape(object)

Creates and returns a graphic shape based on object.

object A bounds frame, points array, pix family or bitmap,
picture, or view to convert to a graphic shape.

return value The following kinds of shapes are created, depending
on what kind of object is passed in object:
bounds frame

A rectangle shape is returned.
points array A polygon shape is returned. You can

pass in the value stored in the points slot
in a view of class clPolygonView. This is a
binary data structure that has a class of
'polygonShape and contains data
describing a polygon shape.

Note

This option is intended to create a shape from data you
retrieve from a clPolygonView. However, you can
manually create the points data structure by using the
ArrayToPoints routine. ◆

pix family or bitmap
A bitmap shape is created and returned. If
the pix family or bitmaps has a mask, it is
contained in an extra slot mask.

picture A picture shape is returned.
view A picture shape is returned.

Note

MakeShape may return a shape that uses less memory
than what you would need if you did the equivalent
capture of a view into a bitmap with ViewIntoBitmap. ◆

COMPATIBILTITY

Versions of this function prior to Newton 2.1 OS ignore a bitmap’s mask.

C H A P T E R 6

Drawing and Graphics 2.1

6-40 Drawing and Graphics Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

MakeTextBox 6

MakeTextBox(text,left, top, right, bottom)

Creates a text box shape in the specified bounds box.

text A string used to create the text box shape.

left The left boundary.

top The top boundary.

right The right boundary.

bottom The bottom boundary.

return value A text box shape.

DISCUSSION

The text is drawn in the font specified in the style frame. The text is clipped if
it spills out of the bounds box.

SEE ALSO

For an example of using this function see “Creating Ink and TextBox Shapes”
beginning on page 6-19.

MungeShape 6

MungeShape(shape, action, style)

Flips a shape, or rotates it to the right.

shape A shape or shape array.

action On of the following symbols: 'rotateRight,
'flipHorizontal, or 'flipVertical.

style Style frame to use if shape must be converted to a
bitmap.

return value A shape or shape array.

C H A P T E R 6

Drawing and Graphics 2.1

Drawing and Graphics Reference 6-41
Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

This function modifies the shape in-place, unless the shape is unmodifiable.
In that case, it will create a bitmap that looks like the shape, and operate on
the new bitmap.

SPECIAL CONSIDERATIONS

You cannot use the 'rotateRight or 'flipHorizontal options, with bitmap
shapes of bit depth greater than 1.

SEE ALSO

For an example use of this function, see “The MungeShape Function”
(page 6-22).

PackRGB 6

PackRGB(red, green, blue)

Returns a packed integer in a format that can be used when drawing shapes
or text.

red A 16-bit integer, that is in the range [0,65535].

green A 16-bit integer, that is in the range [0,65535].

blue A 16-bit integer, that is in the range [0,65535].

return value A packed integer representing the color.

PictToShape 6

PictToShape(pict, bounds)

Converts a picture binary object and returns an array of shapes that will
produce the same bits on the screen.

pict The PICT binary object to convert.

bounds A bounds frame for the rectangle you would like pict to
be imaged into. If you pass nil, it uses the bounds
stored in the PICT (which is the normal thing to do).

return value A shape or shape array.

C H A P T E R 6

Drawing and Graphics 2.1

6-42 Drawing and Graphics Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

Unlike MakeShape, this function creates an array of shapes for the individual
drawing commands that comprise the PICT object. For a discussion of this,
see the note on page 6-14.

C H A P T E R 6

Drawing and Graphics 2.1

Drawing and Graphics Reference 6-43
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Summary 6

Constant 6

Gray Tone Constants 6

kRGB_Gray0
kRGB_Gray1
kRGB_Gray2
kRGB_Gray3
kRGB_Gray4
kRGB_Gray5
kRGB_Gray6
kRGB_Gray7
kRGB_Gray8
kRGB_Gray9
kRGB_Gray10
kRGB_Gray11
kRGB_Gray12
kRGB_Gray13
kRGB_Gray14
kRGB_Gray15
kRGB_White
kRGB_Black
kRGB_16GrayIncrement

Transfer Mode Constants 6

modeCopy
modeOr
modeXor
modeBic
modeNotCopy
modeNotOr
modeNotXor
modeNotBic
modeMask

C H A P T E R 6

Drawing and Graphics 2.1

6-44 Drawing and Graphics Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Data Structures 6

Style Frame 6

aStyleFrame := {
textPattern: toneOrPattern, //tone to display text in
selection: integerOrNil, //size of selection handles
penPattern: toneOrPattern, //tone for text and frame of shapes
fillPattern: toneOrPattern, //tone to fill shapes with
...
}

Patterns 6

pattern

gray pattern

dithered pattern

Functions and Methods 6

FindShape(shape,x,y,style) //is point (x,y) in shape?
GetMaskedPixel(x, y, bitmap) //returns value of pixel in a bitmap
GetBlue (packedRGB) //returns blue value of packed RGB integer
GetGreen (packedRGB) //returns green value of packed RGB integer
GetPointsArrayXY(unit) //returns points array in (x,y) order
GetRed (packedRGB) //returns red value of packed RGB integer
GetStrokePointsArray(stroke, format) //get points array from ink stroke
GetTone(packedRGB) //returns value of packed RGB int at curr bit depth
view:GrayShrink(bitmap, style) //renders pix family anti-aliased
IsEqualTone(packedRGB1, packedRGB2) // are these two RGB ints close?
MakeBitmap(widthInPixels, heightInPixels, optionsFrame) // makes bitmap
MakeInk(inkdata,left, top, right, bottom) // creates an ink shape
MakeShape(object) //creates a shape
MakeTextBox(text,left, top, right, bottom) // creates a text box shape
MungeShape(shape, action, style) //flips or rotates a shape
PackRGB(red, green, blue) //creates a pcaked RGB integer
PictToShape(pict, bounds) //makes picture shape from picture object

About Sound 7-1
Preliminary Draft.  Apple Computer, Inc. 4/21/97

C H A P T E R 7

Sound 7

This chapter describes the enhancements to the sound interface for the
Newton 2.1 OS, including the sound input interface, and improvements to
playback and sound compression.

About Sound 7

The sound interface has been improved in the Newton 2.1 OS with a number
of enhancements. The most notable include:

■ support for sound recording in protoSoundChannel, with appropriate
sound input hardware

■ new objects to support sound recording: soundRecorder and
protoRecorderView

■ a new sound frame object, protoSoundFrame

■ support for 16-bit sound samples, which are generated by the MessagePad
2000 and eMate 300 sound recording hardware

■ support for recording and playback of compressed sounds via codecs
(compressor-decompressors); built-in codecs include muLaw, IMA, GSM,
and a synthesizer codec for sound generation

Figure 7-0
Listing 7-0
Table 7-0

C H A P T E R 7

Sound

7-2 About Sound

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Terminology 7

channel A virtual connection to specific piece of sound hardware.
codec Compressor-decompressor.
sample A binary object consisting of sound samples (supplied

by an analog to digital converter). The 1.x and 2.0
Newton devices use the same sample format as
Macintosh (8 bit unsigned). Newton devices with the 2.1
OS can also use 16-bit linear (signed) samples.

volume A value used to specify the loudness for a sound. The
1.x interface supports integer volumes 0 through 4, (0 =
quiet; 4 = maximum volume). The 2.0 interface supports
real volumes in the volume slot of a sound frame, which
correspond to dB (decibel) levels. A large negative value
corresponds to silence, and 0.0 corresponds to full
volume. The Newton 2.1 OS interfaces add a
decibel-based system volume.

Compatibility 7
All 1.x and 2.0 functions, protos, and methods work the same under the
Newton 2.1 OS. Newton 2.1 OS sound frames are backwards compatible
with 1.x and 2.0 systems, although sounds created under the 2.1 OS that use
codecs or the new 16-bit data format cannot be played on 1.x or 2.0 systems.

Hardware Volume Support 7
Support for hardware volume control has been added to the Newton 2.1 OS.
If a particular system has hardware volume control (for example, the eMate
300), the hardware volume control is used to determine the default volume
for sounds. This is overridden when you specify the volume in sound
functions.

C H A P T E R 7

Sound

About Sound 7-3
Preliminary Draft.  Apple Computer, Inc. 4/21/97

User Interface 7
Other than support for hardware volume control, there is no direct user
interface for sounds, apart from the Sound, Recording, and Alarm
preferences panels, and the volume control in the Extras Drawer. The system
does include three new user interface objects that support sound input:
sound stationery, the soundRecorder slip, and protoRecorderView.

Sound stationery is a new type of Notepad stationery that allows users to
record and play back sounds. Users can tap the New button and choose the
Recording item to create a new recording sheet, as shown in Figure 7-1. The
recording sheet contains controls the user can tap to record and play sounds.
In addition, it contains lined “paper” like a regular note, on which the user
can write notes.

There’s no developer interface to the sound stationery.

Figure 7-1 Sound stationery

The soundRecorder slip is a root view slip (Figure 7-2) that allows you to
easily include sound recording and playback in any application. This slip
incorporates all the code necessary to record and playback sounds. For

C H A P T E R 7

Sound

7-4 About Sound

Preliminary Draft.  Apple Computer, Inc. 4/21/97

information on how to use this slip in your applications, see “Using the
Built-in Sound Recorder Slip” (page 7-9).

Figure 7-2 Sound recorder slip

Sound Input 7
There are four main components to the new sound input capabilities in the
Newton 2.1 OS: the NewtonScript API for recording and storing sound;
protoRecorderView (a proto) and soundRecorder (a built-in sound recorder
slip) that let you add sound recording and playback capabilities to an
application; and sound stationery, a new type of Notepad stationery that lets
users record and organize sounds.

For details on using the protoRecorderView in your applications, see “Using
the protoRecorderView” (page 7-8). For details on using the soundRecorder
object in your applications, see “Using the Built-in Sound Recorder Slip”
(page 7-9). For details on how to use the NewtonScript API to record sound,
see “Using the NewtonScript API to Record Sound” (page 7-12).

Sound stationery has no developer interface and is discussed in the previous
section, “User Interface.”

Sound Compression 7
Under previous versions of the Newton OS, sound was not compressed. The
Newton 2.1 OS now supports recording and playback of compressed sounds.
The following types of sound compression are supported:

C H A P T E R 7

Sound

About Sound 7-5
Preliminary Draft.  Apple Computer, Inc. 4/21/97

■ muLaw. This is a standard compression technique that is often used to
compress voice data. It compresses each 16-bit sample into 8-bits. Rather
than simply throwing away the least significant 8 bits, it instead saves
fewer bits from each sample, but it shifts them to save the important ones.
This tends to preserve the dynamic range better than truncation.

■ IMA (Interactive Multimedia Association). This is another popular
compression technique that is especially good for voice data. It converts a
frame of 64 16-bit samples to a 34-byte frame. It compresses each 16-bit
sample to 4 bits, and uses 2 additional bytes as decompression
information. This technique works better for music than muLaw or GSM.

■ GSM (Global System for Mobile-Communications). This is a standard
compression used for cellular phone data in Europe. It converts a frame of
160 16-bit samples to a 33-byte frame. It is a mathematically intensive
compression technique that works effectively only on devices containing a
fast CPU, such as the MessagePad 2000. GSM compressed data doesn't
sound quite as good as IMA, but it is less than half the size.

These types of sound compression are implemented by built-in codecs
(compressor-decompressors). Using a codec, the system plays a compressed
sound using a two-step process. The sound data is decompressed into an
intermediate buffer by the codec, then the buffer is scheduled and played
like an uncompressed sound. Similarly, during recording, sound sample data
is recorded into a temporary buffer first and then compressed into the binary
object where it is to be stored.

With codecs, intermediate buffers are used to avoid skips in the sound that
might be caused by the system trying to access the binary object, which is
typically a virtual binary object (VBO). This is in contrast to uncompressed
sounds which are played directly from the sound object, or recorded directly
to the binary object, with no intermediate buffering.

For details on how to compress and uncompress sounds, see “Compressing
Sound” (page 7-15).

Synthesized Sound 7
The Newton 2.1 OS contains a built-in synthesizer codec. This codec can be
used to generate tones based on sine wave addition (like telephone tones)
using up to 12 sine waves, and tones produced by several variants of FM

C H A P T E R 7

Sound

7-6 About Sound

Preliminary Draft.  Apple Computer, Inc. 4/21/97

synthesis using up to 4 sine waves to describe a sound. The following
attributes can be specified for each sine wave: sustain amplitude, peak
amplitude, sustain time, release time, attack time, decay time, lead silence,
trail silence, and frequency.

Synthesized sounds are typically much smaller than sampled sounds, so if
your application plays custom sounds, you may want to synthesize them
rather than using a recorded sample. For details on using the synthesizer
codec, see “Synthesizing Sound” (page 7-17).

Devices and Channels 7
The Newton 2.1 OS now supports multiple output devices for playback and
multiple input devices for recording. The system uses a default output
device which can be overridden by the sound channel. The system also uses
a default input device which can similarly be overridden by the channel.

Despite this flexibility, current hardware cannot send two simultaneous
sounds to different devices: all concurrent or overlapping output must go to
the same device(s). This means that if you have a sound playing on the
external speaker, and you request a sound on the internal speaker, it is
routed to the external speaker instead. The same is true of input: all
simultaneously active input channels have the same source.

The number of simultaneous sounds that can be played is limited by the
processing power of the CPU, the codecs in use, and memory constraints. On
the eMate 300 and MessagePad 2000, the number is about 4, depending on
the exact nature of the sounds being played.

The Newton 2.1 OS supports the following output devices:

kDefaultDevice 0x00 // default output device
kInternalSpeaker 0x01 // the internal speaker
kLineOut 0x08 // line out on the interconnect

and the following input devices:

kDefaultDevice 0x00 // default input device
kInternalMic 0x04 // the internal microphone
kLineIn 0x10 // line in on the interconnect bus

C H A P T E R 7

Sound

Using Sound 7-7
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Notice that each device is represented by a single bit, so that the devices can
theoretically be OR’ed together. In the 2.1 OS, however, more than one input
or output device at a time is not supported.

It is possible to have multiple recording sessions running simultaneously, if
you want to record the same input on multiple channels.

Sampling Rates 7
The hardware sampling rate of all Newton devices based on the 2.0 and
earlier operating system is 22026.43172. On these devices, sampling rates of
22026.43172 and 11013.21586 have been commonly used for sounds.

On Newton 2.1-based devices, the hardware sampling rate is 21600, so you
should use that as your base rate on such devices. On the MessagePad 2000
unit, a powerful algorithm resamples sounds recorded at any rate, so they
can be played without significant degradation of quality. On the eMate 300
unit, the best sampling rate multiple to use for best quality sounds is 10800.

New NTK Sound Import Function 7
There is a new NTK compile-time function, GetSoundFrame, that retrieves a
sound from an open Macintosh sound resource at compile time. This
function works just like the older functions, GetSound and GetSound11, but it
can import a sound recorded at any sampling rate. Note that this function is
available in the Mac OS version of NTK 1.6.4. The Windows version of NTK
will implement this functionality differently.

Using Sound 7

This section describes how to use the enhanced sound interface to perform
these specific tasks:

■ record sound using the protoRecorderView

■ record sound using the built-in recorder slip

■ record sound programmatically using the NewtonScript API

C H A P T E R 7

Sound

7-8 Using Sound

Preliminary Draft.  Apple Computer, Inc. 4/21/97

■ using sound compression

■ synthesizing sounds

■ set and get sound-related user preference data

This section also gives new information about using the existing PlaySound
function.

Using the protoRecorderView 7
The system includes a new proto, protoRecorderView, that implements a
simple user interface object to record and play sounds. The proto
incorporates all the code necessary to record and play sounds. You can use
this proto to add sound recording and playback capabilities to any
application by embedding it in a view in the application. The proto is shown
in Figure 7-3.

Figure 7-3 protoRecorderView

You retrieve the sound data recorded in a protoRecorderView by sending the
view the GetSounds message. This method returns the array of sound frames
recorded.

The recorder (protoRecorderView) has an internal state that changes when the
user taps one of its buttons. Each time there's an event that causes a state
change, the recorder sends a SetState message to the statusText slot in the
view. By default the statusText slot is nil. You can catch state changes by
implementing a statusText slot that contains a frame that contains a
SetState method. For example, here is how you could implement such a
frame to handle the SetState message.

myProtoRecorderView.ViewSetupFormScript := func()
begin
self.statusText := {

_parent: self, // only if you want to call inherited

C H A P T E R 7

Sound

Using Sound 7-9
Preliminary Draft.  Apple Computer, Inc. 4/21/97

SetState: func(oldState, newState, hasSound)
begin
// do your work here
// for example, catch a transition to the stopped state
// and call GetSounds to retrieve the recorded sounds
end,

}
end;

The SetState method is called with three parameters. The first, (oldState in
the example) is an integer representing the recorder's previous state; the
second (newState in the example) is an integer representing the recorder's
new state; and the third (hasSound in the example) is a Boolean that is true if
the recorder currently has some sound frames defined. This last parameter
allows you to determine if the recorder view has any data to play (Boolean is
true), or if it has none (Boolean is nil).

The first two parameters to SetState (oldState and newState in the example)
can have the following values:

kInactive := 1; // default state (stopped)
kRecording := 2; // sent before recording is started
kPlaying := 4; // sent before playing is started
kPlayPaused := 8; // sent before playing is paused
kRecordPaused := 16; // sent before recording is paused
kStopping := 32; // sent before the sound channel is stopped
kSetupStore := 64; // sent before recording is started

The kSetupStore state indicates that recording is about to start. After the
kSetupStore message is sent, the state is immediately set back to kInactive.
The kStopping value indicates that recording or playback is about to stop.
After it has completely stopped, the state is set to kInactive.

If you want to explicitly set the store where recorded sounds are stored by
the recorder view, you can set the slot
protoRecorderView.RecordEngine.fStore to the destination store. Otherwise
the default store is used for recorded sounds (in VBOs).

Using the Built-in Sound Recorder Slip 7
The system includes a new built-in user interface object that lets the user
control sound recording and playback. This floating slip (Figure 7-2 on

C H A P T E R 7

Sound

7-10 Using Sound

Preliminary Draft.  Apple Computer, Inc. 4/21/97

page 7-4) exists as a child of the root view, and is named soundRecorder. This
slip incorporates all the code necessary to record and play sounds. You can
use this slip to add sound recording and playback capabilities to any
application.

Note that because the soundRecorder slip is an independent floating view,
you don’t embed it in your application’s view hierarchy, you simply send it a
message to open it.

You can access the built-in sound recorder with code like this:

sr := GetRoot().soundRecorder;

To open this view to allow recording, use this call:

if sr then
sr:OpenRecord(callback);

This sets up the recorder slip to do recording and opens it on the screen. The
callback parameter is a function that you supply and is called when the user
closes the slip. When the user taps the close box to close the recorder, the
callback function is called with a single argument, the array of sound frames
that were allocated as a result of recording. You can store them or do
whatever processing is required.

To play a sound using the sound recorder slip, use this call:

sr:OpenPlay(soundFrame);

This sets up the recorder to play the sound frame passed in soundFrame, and
opens it on the screen.

After opening the recorder slip with either OpenPlay or OpenRecord, you can
set several slots in the sound recorder base view to override values in the

C H A P T E R 7

Sound

Using Sound 7-11
Preliminary Draft.  Apple Computer, Inc. 4/21/97

associated sound channel and sound frames created by it. The slots you can
set are shown in Table 7-1.

Here’s an example of setting the fSoundFrameSlots slot in the sound recorder
base view to specify that IMA compression be used for recording:

sr.fSoundFrameSlots :=
{sndFrameType: 'codec, // use a codec
codecName: "TIMACodec", // select IMA codec
bufferSize: 12500, // size of codec buffers
bufferCount: 4, // # of codec buffers
compressionType: kSampleLinear, // for playback
dataType: k16bit, // for playback
samplingRate: 10000, // samples per second
compressionRatio: 64/34, // for IMA
}

Table 7-1 Sound recorder slots you can set

Slot Description

fSoundFrameSlots A frame that contains slots to be copied to the sound
frames used for recording. This frame overrides the
default values of the slots in any sound frames
created by soundRecorder. This frame can contain any
slots that you want copied to the sound frames
created by soundRecorder.

fInputGain Sets the inputGain slot in the sound channel.

fInputDevice Sets the inputDevice slot in the sound channel.

fOutputDevice Sets the outputDevice slot in the sound channel.

fCallback A function that is called when the user taps the close
box to close the recorder. It is passed a single
argument, the array of sound frames that were
allocated as a result of recording. Note that this slot is
set by the OpenRecord method (it’s the argument you
passed to OpenRecord), so if you open the recorder by
calling OpenRecord, then you don’t need to also set this
slot.

C H A P T E R 7

Sound

7-12 Using Sound

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Using the NewtonScript API to Record Sound 7
Because sound recording requires some user interface controls to start and
stop the recording process, there is no single programmatic interface for
recording equivalent to the PlaySound function. However, there is a
ready-made sound recording proto and slip that you can use to quickly add
sound recording and playback capabilities to any application; for details, see
the previous subsections, “Using the protoRecorderView” and “Using the
Built-in Sound Recorder Slip.”

If you want to create your own sound recording interface and
programmatically control everything, then you’ll need to use the
NewtonScript API directly, as described in this subsection.

To record sound programmatically, you must do these steps:

1. Create a new sound channel.

2. Open the sound channel.

3. Allocate a block of memory to hold the recorded sound samples.

4. Schedule the recording.

5. Start the recording.

6. Finally, stop recording.

This whole process is shown in Listing 7-1.

Listing 7-1 Sound input

// callback function passed to NewInputBlock below
MyCallback: func(state, result) begin
if self.notdone then begin // test a flag to see if we’re done

// if so, continue with another input block
local anotherSound := myChannel:NewInputBlock(MyCallback);
myChannel:Schedule(anotherSound);
end

else
// if we’re done, then close the channel
myChannel:Close();

end

C H A P T E R 7

Sound

Using Sound 7-13
Preliminary Draft.  Apple Computer, Inc. 4/21/97

// sound input sample code; first initialize and open the channel
myChannel := protoSoundChannel:NewRecording();
myChannel:Open();

// good idea to create and schedule 2 input blocks initially
local mySound := myChannel:NewInputBlock(MyCallback);
local anotherSound := myChannel:NewInputBlock(MyCallback)
myChannel:Schedule(mySound);
myChannel:Schedule(anotherSound);
myChannel:Start(true);

You first create a new sound channel using the method
protoSoundChannel:NewRecording. This creates a sound channel that is
properly initialized for recording. Next, open the sound channel by sending
it the Open message. Then, create a new block of memory to hold the recorded
samples by sending it the NewInputBlock message, which returns a sound
frame. The samples slot in this sound frame holds a virtual binary object
(VBO) that is allocated for the sample data. This size of the VBO is
determined by the value of the inputBlockSize slot in the sound channel,
which defaults to 65536 bytes.

If you might need to record more than one buffer’s worth of input data, it’s a
good idea to allocate and schedule two input sound frames initially, to
provide double-buffering. This way, the next buffer is always ready
immediately, if needed.

Next, schedule the recording by sending the sound channel the Schedule
message, passing the new sound frame as a parameter. Finally, you can start
recording by sending the Start message to the sound channel. After you
send the Start message, there will be about a half-second delay while the
sound hardware powers up before recording starts.

The Sound Manager then records sound into the scheduled sound frame.
Once the samples VBO is full, it calls the callback function object provided by
the sound frame. Then, the Sound Manager looks to see if there is another
scheduled sound frame to continue recording into, and if so, it continues
recording into the next sound frame. It is your responsibility to ensure that
enough sound frames are scheduled to keep recording.

It is also your responsibility to keep track of which sound frames have been
created and scheduled, and to update the size of the final input block
(samples VBO) when the stop button is pressed. The return value of the Stop
method is a result frame (page 7-31) that indicates where in the sample data

C H A P T E R 7

Sound

7-14 Using Sound

Preliminary Draft.  Apple Computer, Inc. 4/21/97

recording was stopped, so you can adjust the size of the VBO in the last
sound frame to be just large enough to hold the recorded samples. Here is an
example of how to use the SetRecordingLength method do this:

// stop recording and trim last VBO size
local result := myChannel:Stop();
local sound := result.sound;
local numSamples := result.index;
sound:SetRecordingLength(numSamples, nil);

Setting the Input Gain 7

For recording, you can specify an input gain, which is an amplification
applied to the incoming signal. The input gain can have a value ranging from
0 to 255. If the input gain is 0, then the incoming signal is not amplified at all;
if the input gain is 255, then the signal is amplified by an amount that the
driver has determined to be a maximum desirable amount. The middle value
of 128 is considered to be an “optimal” setting for normal use.

You can set the initial input gain by setting the inputGain slot of the
protoSoundChannel. After the channel is open, you can change the input gain
by using the method SetInputGain. The method GetInputGain returns the
current input gain of the channel.

The behavior of the input gain can seem non-intuitive. The signal that comes
from the internal microphone on the MessagePad 2000 is a very weak one,
and the system relies on the input gain to boost it to a level that you can hear.
Thus, when you are using the internal microphone and you set the input
gain to 0, the recording will be silent.

The signal that comes from the line-in jack, however, is much stronger. When
the input gain is set to 0, the recording is quite loud, which you might not
expect if you think about it as an input volume instead of an input gain. In
both cases, the default value of 128 instructs the device to amplify the signal
to an “optimal” level.

The system does not support a self-adjusting input gain.

In the Recording slip of the Prefs application, there’s a slider that lets the user
adjust the input gain (Recording volume). If the inputGain slot of the sound
channel is nil, this user preference setting is used (which is stored in the
inputGain user configuration variable).

C H A P T E R 7

Sound

Using Sound 7-15
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Compressing Sound 7
On the Newton 2.1 OS, you can play compressed sounds and record sound,
compressing it on the fly. You control sound compression by setting slots in
the sound frame; for a complete description of sound frame slots, see “Sound
Frame” (page 7-28). The key slots controlling sound compression include:

■ sndFrameType, specifying whether or not to use a codec

■ codecName, identifying the codec to use

■ bufferCount, setting how many codec buffers to allocate

■ bufferSize, setting the size of each codec buffer in bytes

■ compressionType, specifying the compression type if a codec is not used

■ samplingRate, specifying the number of samples per second to play or
record

■ compressionRatio, an optional slot specifying the compression ratio for
user interface updating

You can compress and decompress sound using one of the built-in codecs, as
described in the following subsections.

In addition to using compression, you can control the resulting size of
recorded sounds by varying the sampling rate used when recording. The
highest quality sound results from using a sampling rate of 21600, however,
this also uses the most storage. You can use lower sampling rates to decrease
the size of the resulting sound object, with some loss of quality. Reasonable
sampling rates are 8000 on the MessagePad 2000 unit and 10000 on the eMate
300 unit.

Note that playing back a sound at a sampling rate different from that at
which it was recorded shifts the sound’s pitch.

Using Codecs to Compress and Decompress Sound 7

You can use one of several different codecs built into the Newton 2.1 OS to
compress and decompress sounds. The codec mechanism makes use of
intermediate buffers to hold the sound data, so that there are no skips in the
sound caused by the system accessing VBO storage. You should use at least
two buffers, and typically four buffers of the same size works well. The total

C H A P T E R 7

Sound

7-16 Using Sound

Preliminary Draft.  Apple Computer, Inc. 4/21/97

size of all the buffers should be enough to hold 2-3 seconds of sound; so the
size of the buffers will vary, depending on the sampling rate and the size of
each sample.

For example, if the sampling rate is 8000 samples per second, and you are
recording 16-bit samples, that yields 16 KB per second. A total buffer size of
40 KB would be adequate to handle the data. You could allocate four 10 KB
buffers to satisfy this need. In the following examples, various values for
buffer size are shown, depending on the sampling rate.

Note that if the sound sample data is not stored in a VBO, the buffers can be
much smaller.

When using a codec, the samplingRate, compressionType, and dataType slots
define the format of the data produced by decompression (for playback), or
required for compression (for recording). They also define the format of the
data in the intermediate buffers.

To compress or decompress sounds using the muLaw codec, set up the slots
in the sound frame like this:

{sndFrameType: 'codec, // use a codec
codecName: "TMuLawCodec", // select muLaw codec
bufferSize: 10000, // size of codec buffers
bufferCount: 4, // # of codec buffers
compressionType: kSampleLinear, // for playback
dataType: k16bit, // for playback

samples: mySamples, // compressed sound object
samplingRate: 8000, // set to any value you want
compressionRatio: 1, // for muLaw
}

The muLaw codec compresses each 16-bit sample to 8 bits.

To use the IMA codec, set up the slots in the sound frame like this:

{sndFrameType: 'codec, // use a codec
codecName: "TIMACodec", // select IMA codec
bufferSize: 12500, // size of codec buffers
bufferCount: 4, // # of codec buffers
compressionType: kSampleLinear, // for playback
dataType: k16bit, // for playback

samples: mySamples, // compressed sound object
samplingRate: 10000, // set to any value you want

C H A P T E R 7

Sound

Using Sound 7-17
Preliminary Draft.  Apple Computer, Inc. 4/21/97

compressionRatio: 64/34, // for IMA
}

This example shows the same values as those used for the highest quality
recording level on the Newton 2.1 devices (Music on the MessagePad 2000,
and High on the eMate 300). A sampling rate of 8000 is used for the next
lowest quality level (Voice 4K on the MessagePad 2000, and Low on the
eMate 300).

The IMA codec compresses each block of 64 16-bit samples to 34 bytes,
saving 73% over no compression.

To use the GSM codec, set up the slots in the sound frame like this:

{sndFrameType: 'codec, // use a codec
codecName: "TGSMCodec", // select GSM codec
bufferSize: 10000, // size of codec buffers
bufferCount: 4, // # of codec buffers
compressionType: kSampleLinear, // for playback
dataType: k16bit, // for playback

samples: mySamples, // compressed sound object
samplingRate: 8000, // set to any value you want
compressionRatio: 160/33, // for GSM
}

This example shows the same values as those used for the lowest quality
recording level on the MessagePad 2000 device. Note that GSM is a
mathematically intensive compression technique that works effectively only
on fast processors, such as that used in the MessagePad 2000. It is possible to
play GSM-encoded sounds on the eMate 300, but not to record them.

The GSM codec compresses each block of 160 16-bit samples to 33 bytes,
saving 90% over no compression.

Synthesizing Sound 7
The Newton 2.1 OS contains a built-in synthesizer codec that can be used to
generate tones based on sine wave addition. You can specify up to 12
individual sine wave tones, which are mixed together to create a sound.
Alternately, you can use one of several variants of FM synthesis to create up
to four modulated tones (from the base 12), which are mixed together to
create a sound.

C H A P T E R 7

Sound

7-18 Using Sound

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Because the system can play up to four sound channels simultaneously, you
can generate quite complex synthesized sounds by using multiple sound
channels playing at the same time. Note that multiple sound channels use
more heap space, so depending on your application, you may be limited if
you are low on heap space.

Synthesized sounds are typically much smaller than sampled sounds, so if
your application plays custom sounds, you may want to synthesize them
rather than using a recorded sample.

To use the synthesizer codec, set up the slots in the sound frame like this:

{sndFrameType: 'codec, // use a codec
codecName: "TDTMFCodec", // select synthesizer codec
bufferSize: 5000, // size of codec buffers
bufferCount: 4, // # of codec buffers
compressionType: kSampleLinear, // for playback
dataType: k16bit, // for playback

samples: mySynthData, // synthesizer binary data
samplingRate: 21600,
}

There is a shortcut for using the synthesizer codec. You can simply call the
PlaySound function and pass a binary object of the class 'TDTMFCodec, like this:

PlaySound(mySynthSound); // class of sound object must be 'TDTMFCodec

When passed a binary object of this class, PlaySound plays it using the
synthesizer codec. If the codec is not found, an exception is thrown. This
shortcut works for the whole family of PlaySoundxxx functions.

The data in the samples slot of the sound frame is a binary object of the class
'samples. You can create binary synthesizer data by using the compile-time
function MakeBinaryFromHex.

The data consists of several unsigned short (16-bit) values, structured as
follows:

type 'DTMF' {
unsigned short; /* Parameter block type, set to 1 */
unsigned short; /* Synthesis type (0-4) */
unsigned short; /* Reserved, set to 0 */
unsigned short; /* loop count */
unsigned short = $$CountOf(DTMFTones); /* Number of tone blocks */

wide array DTMFTones { /* specify 1 to 12 tone blocks */

C H A P T E R 7

Sound

Using Sound 7-19
Preliminary Draft.  Apple Computer, Inc. 4/21/97

unsigned short; /* frequency integer part */
unsigned short; /* frequency fractional part */
unsigned short; /* sustain amplitude */
unsigned short; /* leading silence in ms */
unsigned short; /* attack in ms */
unsigned short; /* decay in ms */
unsigned short; /* sustain in ms */
unsigned short; /* release in ms */
unsigned short; /* peak amplitude */
unsigned short; /* trailing silence in ms */
};

};

C H A P T E R 7

Sound

7-20 Using Sound

Preliminary Draft.  Apple Computer, Inc. 4/21/97

You can specify up to 12 DTMFTones blocks describing individual tones that
are mixed (added) or modulated together to generate a sound. The different
sound synthesis types are explained in Table 7-2.

Table 7-2 Sound synthesis types

Synth
type Description

0 This multiple-synthesis type mixes from 1 to 12 pure sine wave
tones. Each tone can have its own envelope, amplitude, and
frequency. The minimum number of tones required to use this
type is 1.

1 This is the most basic FM (frequency modulation) type, and a
minimum of 2 tones must be specified to use it. Each tone can
have its own amplitude and modulation. The first tone in each
pair is the carrier, and the second is the modulation frequency.
You can have a maximum of 6 pairs of tones. For example,
tones 1 and 2 are the first FM pair, tones 3 and 4 are the second
FM pair, and so on. Each pair of tones is modulated together to
create one resulting tone, and these resulting tones are then
mixed together to generate the sound. So using this type, you
can mix up to 6 tones.

C H A P T E R 7

Sound

Using Sound 7-21
Preliminary Draft.  Apple Computer, Inc. 4/21/97

The loop count plays a sound multiple times. This is useful for creating
groups of short tone bursts. This value specifies the number of times to
repeat the sound after it’s played once. So specify 0 to play the sound just
once, specify 1 to repeat it once, and so on.

The frequency is specified in Hz, and is a fixed point real number
constructed from two fields: the integer part and the fractional part. For
example, if you specify 340 for the integer part and 2 for the fractional part,
the codec generates a tone of 340.2 Hz.

2 This is a more complex type of FM, where each resulting tone
consists of 3 base tones. Tone 1 is the carrier, tone 2 is the first
modulator, and tone 3 is the second modulator. For this type of
FM, the two modulators are mixed and then used to modulate
the carrier. In this way, each group of 3 tones are mixed and
modulated together to create one resulting tone, and these
resulting tones are then mixed together to generate the sound.
So using this type, you can mix up to 4 resulting tones.

3 This type is a variation on type 3. Again 3 base tones are used to
generate one tone. Using this modulation type, the modulator,
tone 2, is first modulated by tone 3, then the resulting
modulated waveform is used to modulate tone 1, the base
carrier. In this way, each group of 3 tones are modulated
together to create one resulting tone, and these resulting tones
are then mixed together to generate the sound. So using this
type, you can mix up to 4 resulting tones.

4 This is the most complex FM mode. This mode requires 4 base
tones to generate one tone. The first tone is the carrier, the
second tone is modulated by the third tone, and the third tone
is modulated by the fourth tone. The result is then used to
modulate the carrier. In this way, each group of 4 tones are
modulated together to create one resulting tone, and these
resulting tones are then mixed together to generate the sound.
So using this type, you can mix up to 3 resulting tones.

Table 7-2 Sound synthesis types

Synth
type Description

C H A P T E R 7

Sound

7-22 Using Sound

Preliminary Draft.  Apple Computer, Inc. 4/21/97

The time values used to play a tone are collectively referred to as the tone
envelope, illustrated in Figure 7-4.

Figure 7-4 Tone envelope

All time values specified in the synthesizer data are in milliseconds (1000 ms.
= 1 second). There are four time values that make up a tone envelope: attack,
decay, sustain, and release. In Figure 7-4, two additional values, leading
silence and trailing silence, are also shown.

Attack is the time in which the tone ramps in amplitude from 0 to the peak
amplitude. Decay is the time in which the tone ramps from the peak
amplitude to the sustain amplitude. Sustain is the time which the tone
remains at the sustain amplitude. Finally, release is the time in which the
tone amplitude drops from the sustain amplitude to 0.

All of the times except sustain can be 0. This means, for example, that a tone
would leap from 0 amplitude to the sustain amplitude and then from the
sustain amplitude to 0 at the end, with no ramp. All ramps are linear.

The leading silence and trailing silence values simply specify a period of
silence before or after the sound plays. This is useful when mixing multiple
tones and you want a delay in the start of one of the tones, or a delay in the
finish when looping is used.

The peak amplitude and sustain amplitude are used at two different points
in the tone envelope, as shown in Figure 7-4. The maximum amplitude is
32768; anything above that is clipped. The complexity is that if you are

C H A P T E R 7

Sound

Using Sound 7-23
Preliminary Draft.  Apple Computer, Inc. 4/21/97

mixing (adding) two or more sine waves, then you must limit the total
amplitude to 32768 to avoid clipping. Note that you can specify higher
amplitude values, resulting in clipping distortion, which is sometimes a
desirable part of the sound.

Using Global Sound Preferences 7
User preferences for sound are maintained in the user configuration data,
which is stored in the system soup. A sound channel can override specific
preferences, however.

This section describes how to use the GetUserConfig and SetUserConfig
global functions to access sound-related user configuration variables.

Getting and Setting Input Gain Preference 7

To retrieve the user preference input gain value, pass the 'inputGain symbol
to the GetUserConfig function, as in the following example:

GetUserConfig('inputGain);

The value returned is an integer between 0 and 255 that sound channels used
for input take as the default value of their inputGain slot. The default value is
128.

To set the global input gain value, pass the 'inputGain symbol and the new
gain value to the SetUserConfig function, as in the following example:

SetUserConfig('inputGain, gain);

This code sets the value used as the default value of the inputGain slot in
sound channels used for input. The gain parameter must hold an integer
value between 0 and 255.

This call changes the value of the inputGain slot in the system’s user
configuration data and the input gain in any active channels, but not the
value of the inputGain slots in any active channels. That is, the input gain for
an active channel is changed, but the value of the inputGain slot in the sound
channel frame is not updated to reflect this change.

C H A P T E R 7

Sound

7-24 Using Sound

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Getting and Setting Default Input or Output Devices 7

To retrieve the user preference for the default sound input device, pass the
'inputDevice symbol to the GetUserConfig function, as in the following
example:

GetUserConfig('inputDevice);

This code returns an integer representing the current default input device.
This default can be overridden by putting an inputDevice slot in your sound
channel. Device definitions are given in “Devices and Channels” (page 7-6).

To set the default input device, pass the 'inputDevice symbol and the new
value to the SetUserConfig function, as in the following example:

SetUserConfig('inputDevice, value);

This code sets a value that indicates the default input device used during
recording. It does not change the device for a currently recording input
channel.

To retrieve the user preference for the default sound output device, pass the
'outputDevice symbol to the GetUserConfig function, as in the following
example:

GetUserConfig('outputDevice);

This code returns an integer representing the current default output device.
This default can be overridden by putting an outputDevice slot in your sound
channel.

To set the default output device, pass the 'outputDevice symbol and the new
value to the SetUserConfig function, as in the following example:

SetUserConfig('outputDevice, value);

This code sets a value that indicates the default output device used during
playback. It does not change the device for a currently playing output
channel.

PlaySound Errata 7
The PlaySound function was inadvertently omitted from the Sound chapter in
Newton Programmer’s Guide for Newton 2.0 and Newton Programmer’s Reference.

C H A P T E R 7

Sound

Using Sound 7-25
Preliminary Draft.  Apple Computer, Inc. 4/21/97

This function was documented for the 1.x system, still works the same under
the 2.1 OS, and is documented again in this chapter for completeness.

Note however, it is not the recommended way to play sounds due to
interactions with the user preference settings related to sound. PlaySound
honors user preference settings for pen, alarm, and action sound effects by
comparing the sound frame passed as its argument to the “typical” sound
effects; for example, PlaySound(ROM_click) is silent when pen sound effects
are turned off. This behavior can produce unfortunate side-effects, the most
notable being that GetRoot():SysBeep() does nothing when the alert sound is
the same as the alarm sound and alarm sound effects are disabled.

Rather than PlaySound, it is recommended that you use a sound channel or
the functions PlaySoundEffect, PlaySoundIrregardless, or
PlaySoundIrregardlessAtVolume. The function PlaySoundEffect is preferred to
all other versions of PlaySound for playing pen, alarm, and action sound
effects.

The function PlaySoundAtVolume is not recommended, since it calls PlaySound
and thus is subject to the same limitations.

All of these functions (besides PlaySound) are documented in Newton
Programmer’s Reference.

Using the Sound Registry 7
There is a sound registry that you can use to register new sounds that the
user can choose as the system alert sound (in the Sound preferences slip).
Use the global function RegSound to register a new sound with the system
under a unique symbol. Remember to append your developer signature to
the symbols identifying any sounds that you register. To unregister a sound,
use UnRegSound.

You can get a list of all registered sounds by calling SoundList. This function
returns an alphabetized array of sounds suitable for use directly in a picker
list. The array contains a series of frames; each frame contains an item slot
with the name of the sound, and a soundSymbol slot containing the unique
symbol identifying the sound. Note that there are several built-in sounds
listed in the array, in addition to any custom sounds that have been
registered.

C H A P T E R 7

Sound

7-26 Sound Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

The function GetRegisteredSound is used to return the sound frame for a
registered sound. You pass this function the symbol under which the sound
was registered and it returns the sound frame. If the symbol you pass is not
found in the registry, the system returns the simpleBeep sound frame.

Note

These global functions exist in both the Newton 2.0 and 2.1
operating systems. They were not previously documented
for 2.0. ◆

Sound Reference 7

Constants 7
This section describes constants that your application uses to interact with
the sound interface.

Device Constants 7

The constants described in Table 7-3 are used in the Newton 2.1 OS to
identify sound output and input hardware devices.

Table 7-3 Sound device constants

Constant Value Description

kDefaultDevice 0x00 Default input or output device

kInternalSpeaker 0x01 Internal speaker

kLineOut 0x08 Line out on the interconnect bus

kInternalMic 0x04 Internal microphone

kLineIn 0x10 Line in on the interconnect bus

C H A P T E R 7

Sound

Sound Reference 7-27
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Codec Constants 7

The string literal values described in Table 7-4 are used in the codecName slot
of sound frames to specify a codec to be used to compress or decompress the
sound.

Compression Constants 7

The constants described in Table 7-5 are used in the compressionType slot of
sound frames to specify the encoding format of the sound samples.

Table 7-4 Codec constants

String Description

"TMuLawCodec" MuLaw codec.

"TIMACodec" IMA codec.

"TGSMCodec" GSM codec.

"TDTMFCodec" Synthesizer codec (for playback only).

Table 7-5 Compression constants

Constant Value Description

kSampleStandard 0 Uncompressed 8-bit samples. This is the
only format supported on Newton 2.0
and 1.x devices and corresponds to the
value of this slot (kNone) used in those
versions of the Newton OS. This is the
default.

kSampleMuLaw 1 8-bit samples encoded by the muLaw
compressor (reduced from 16 to 8 bits).

kSampleLinear 6 Uncompressed 16-bit samples. This is the
standard format produced by the
recording hardware on Newton 2.1 OS
devices.

C H A P T E R 7

Sound

7-28 Sound Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Data Type Constants 7

The constants described in Table 7-6 are used in the dataType slot of sound
frames to specify the size of each sound sample.

Data Structures 7
This section describes data structures used in the sound interface.

Sound Frame 7

A sound frame has the following slots.

Note

You can use the new proto, protoSoundFrame (page 7-44), as
the basis for sound frames in the 2.1 OS. Using this proto
provides enhanced features through methods that it
includes. ◆

Slot descriptions

sndFrameType Required. A symbol specifying the type of the sound
frame. The 'simpleSound symbol indicates a standard
sound, while the 'codec symbol indicates a sound
compressed with a codec. For information on codecs,
see “Compressing Sound” (page 7-15). If you specify the
symbol 'codec, you must also supply the codecName,
bufferCount, and bufferSize slots.

codecName A string identifying the codec to be used to compress or
decompress the sound. This slot is required if you

Table 7-6 Data type constants

Constant Value Description

k8Bit 8 Samples are 8 bits each. This is the default.

k16Bit 16 Samples are 16 bits each.

C H A P T E R 7

Sound

Sound Reference 7-29
Preliminary Draft.  Apple Computer, Inc. 4/21/97

specify 'codec in the sndFrameType slot. For more details
on the possible string values, see Table 7-4 (page 7-27).

bufferCount An integer specifying the number of codec buffers to
allocate. Each buffer has the size specified in the
bufferSize slot. This slot is required if you specify
'codec for the sndFrameType slot. For guidelines on this
value, see “Using Codecs to Compress and Decompress
Sound” (page 7-15).

bufferSize An integer specifying the size of each codec buffer in
bytes. This slot is required if you specify 'codec for the
sndFrameType slot. For guidelines on this value, see
“Using Codecs to Compress and Decompress Sound”
(page 7-15).

samples Required. A binary object of the class 'samples, that
contains the sound samples. If the synthesizer codec is
being used, this slot contains the synthesizer data,
which is a binary object of the class 'TDTMFCodec.

samplingRate Optional. Real or integer value describing the sampling
rate of the data in the samples slot. (8000.0, 11013.21586,
and 22026.43172 are common values). If missing, the
sound channel assumes 22026.43172. When using a
codec, this value also describes the sampling rate of
data in the codec buffers.

compressionType Optional. An integer identifying the encoding format of
the samples. If present, it must be kSampleStandard (0),
kSampleLinear (6), or kSampleMuLaw (1). If missing,
kSampleStandard is assumed. If you specify kSampleMuLaw
(or kSampleStandard), you must also set the dataType slot
to k8Bit, since this compressor reduces 16-bit samples to
8-bit samples. If you specify kSampleLinear, you must
also set the dataType slot to k16bit. For more details on
the formats, see Table 7-5 (page 7-27).

compressionRatio Optional. A ratio of the number of uncompressed sound
samples (not bytes) per a number of compressed bytes.
For example, for IMA compression, you would specify
64/34, because 64 samples are compressed into 34 bytes.
This value is used to update the user interface progress

C H A P T E R 7

Sound

7-30 Sound Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

indicator while a compressed sound is playing or
recording.

dataType Optional. An integer specifying the size of each sample
in bits. If present, it must be k8Bit (8) or k16Bit (16). If
missing, k8Bit is assumed.

Note

Older versions of NTK generate sound frames having
the value 0 (zero) in the dataType slot. The system
assumes 0 (zero) is the same as 8 (k8Bit). ◆

volume Optional. An integer or real value specifying the volume
level at which to play this sound. If missing, the
channel's volume setting (see SetVolume method) is
used. Note that if volume is an integer it must have the
value 0, 1, 2, 3, or 4 corresponding to decibel levels
silent, -18 dB, -6 dB, -3 dB, or 0 dB (unity gain)
respectively. If volume is a real number, it is treated as
the actual dB level, and must be negative.
This value overrides the system volume and the channel
volume—including values set by functions such as
PlaySoundAtVolume and sound channel methods such as
SetVolume.

start Optional. An integer value that is the index of the first
sample to play. When this value is missing, 0 is
assumed. Omit this slot in sound frames used for
recording.

count Optional. An integer specifying the number of samples
to play. When this value is missing, Length(samples) /
(dataType/8) is assumed. Omit this slot in sound
frames used for recording.

loops Optional. An integer that is the number of times to
repeat the sound. For example, setting loops to 3 causes
the sound to play a total of four times. When this value
is missing, 0 is assumed. There is no way to specify

C H A P T E R 7

Sound

Sound Reference 7-31
Preliminary Draft.  Apple Computer, Inc. 4/21/97

continuous play. Omit this slot in sound frames used for
recording.

The following Callback method is also part of the sound frame.

Callback 7

soundFrame:Callback(state, result)

Invoked when an operation on the sound frame completes.

state The state of the sound channel when the callback was
executed. Values are:

0 = kSoundCompleted

1 = kSoundAborted

2 = kSoundPaused

result An integer error code, if present. For a listing of possible
values, see “Sound Error Codes” (page 7-52).

return value Unused; you can return anything.

DISCUSSION

This method is invoked when a sound frame is finished playing or recording.
During recording, this method is called when each sound frame is filled.

IMPORTANT

The Callback method may be called slightly before the
sound operation completes; if so, the operation will
complete within 0.333 seconds. The method is called after
the last buffer has been scheduled. ◆

Sound Result Frame 7

A sound result frame returns information when the sound channel stops or
pauses. This frame is returned by the sound channel methods Stop and Pause.

C H A P T E R 7

Sound

7-32 Sound Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Slot descriptions

sound The sound frame that was paused or stopped.
index An integer value that is a zero-based index into the

samples slot of the sound frame. This value describes
where in the sample data the sound channel was
paused or stopped. This value is always between the
value of the sound frame start slot and the value
(start + count).

User Configuration Variables 7

The following user configuration variables are used in the sound interface.
Use the GetUserConfig and SetUserConfig functions to get and set these
values.

Variable descriptions

inputGain The default input gain used during recording. Can be
overridden by the channel.

inputDevice The default input device used for recording. Can be
overridden by the channel.

outputDevice The default output device used for playback. Can be
overridden by the channel.

soundVolumeDb The current system sound volume, in decibels.
alarmVolumeDb The current system alarm volume, in decibels.

Synthesized Sound Data Format 7

The synthesizer codec accepts sound frames whose samples slot contains a
binary object of the class 'TDTMFCodec. The data format of the binary object is
as follows (note this is a C structure). All values are 16 bits in length.

type 'DTMF' {
unsigned short; /* Parameter block type, set to 1 */
unsigned short; /* Synthesis type (0-4) */
unsigned short; /* Reserved, set to 0 */
unsigned short; /* loop count */
unsigned short = $$CountOf(DTMFTones); /* Number of tone blocks */

wide array DTMFTones { /* specify 1 to 12 tone blocks */
unsigned short; /* frequency integer part */

C H A P T E R 7

Sound

Sound Reference 7-33
Preliminary Draft.  Apple Computer, Inc. 4/21/97

unsigned short; /* frequency fractional part */
unsigned short; /* sustain amplitude */
unsigned short; /* leading silence in ms */
unsigned short; /* attack in ms */
unsigned short; /* decay in ms */
unsigned short; /* sustain in ms */
unsigned short; /* release in ms */
unsigned short; /* peak amplitude */
unsigned short; /* trailing silence in ms */
};

};

soundRecorder Object 7

The soundRecorder object is a child view of the root view. It is a built-in user
interface object that lets the user control recording and playback.

After opening the recorder slip with either OpenPlay or OpenRecord, you can
change several slots in the sound recorder base view to override values in the
associated sound channel and sound frames created by it. The slots you can
change are as follows:

Slot descriptions

fSoundFrameSlots A frame that contains any slots that you want to be
copied to the sound frames for recording. This frame
overrides the default values of the slots in any sound
frames created by soundRecorder.

fInputGain Sets the inputGain slot in the sound channel.
fInputDevice Sets the inputDevice slot in the sound channel.
fOutputDevice Sets the outputDevice slot in the sound channel.
fCallback A function that is called when the user taps the close

box to close the recorder. It is passed a single argument,
the array of sound frames that were allocated as a result
of recording. Note that this slot is set by the OpenRecord
method (it’s the argument you passed to OpenRecord), so
if you open the recorder by calling OpenRecord, then you
don’t need to also set this slot.

You can also send the following messages to the soundRecorder object.

C H A P T E R 7

Sound

7-34 Sound Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

OpenRecord 7

soundRecorder:OpenRecord(callback);

Opens the sound recorder slip ready for recording.

callback A function that is called when the user closes the slip.
You must define this function to take one parameter. It
is passed the array of sound frames that were allocated
as a result of recording. Its return value is not used.

return value Undefined; do not rely on it.

OpenPlay 7

soundRecorder:OpenPlay(soundFrame);

Opens the sound recorder slip ready for playing.

soundFrame A sound frame, or an array of sound frames, that is to
be played. For details on the sound frame data
structure, see “Sound Frame” (page 7-28).

return value Undefined; do not rely on it.

Protos 7
This section describes protos used in the sound interface.

protoRecorderView 7

The protoRecorderView system prototype implements a simple set of user
interface controls for recording and playback of sounds. This proto is shown
in Figure 7-3.

Slot descriptions

elapsedTime An integer giving the number of seconds used in
recording.

statusText Set to nil by default. If you wish to catch recorder view
state changes, you can implement a SetState function in
a frame in this slot. See the SetState method later in this
section for more information.

C H A P T E R 7

Sound

Sound Reference 7-35
Preliminary Draft.  Apple Computer, Inc. 4/21/97

The following methods are used with protoRecorderView.

GetSounds 7

recorderView:GetSounds()

Returns the array of sound frames recorded by this object.

return value An array of sound frames.

SetState 7

recorderview.statusText:SetState(oldState, newState, hasSound)

Sent by the recorder view to indicate a state change when the user taps one
of the buttons.

oldState The recorder view’s previous state. The possible values
are shown in Table 7-7.

newState The recorder view’s new state. The possible values are
shown in Table 7-7.

hasSound A Boolean that is true if the recorder currently has some
sound frames defined. This parameter allows you to
determine if the recorder view has any data to play
(Boolean is true), or if it has none (Boolean is nil).

return value Ignored; you can return anything.

DISCUSSION

Each time there's a state change, the recorder view sends this SetState
message to the statusText slot in the view. By default the statusText slot is
nil. You can catch state changes by implementing a statusText slot that
contains a frame that contains a SetState method.

C H A P T E R 7

Sound

7-36 Sound Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

The constants described in Table 7-7 are passed for the values of the first and
second parameters in the SetState message.

SEE ALSO

For more details on how to use this method, see “Using the
protoRecorderView” (page 7-8).

protoSoundChannel 7

The protoSoundChannel system prototype represents a virtual connection to a
specific piece of sound input or output hardware.

Note

protoSoundChannel has been modified to support input in the
2.1 OS. All of the slots listed in this section are new in the 2.1
OS, along with the following methods: IsOpen, NewRecording,
NewInputBlock, SetInputGain, and GetInputGain. Both old and
new methods are documented here for completeness.

Table 7-7 protoRecorderView state constants

Constant Value Description

kInactive 1 Sound channel is stopped (default state).

kRecording 2 Indicates recording is about to be started.

kPlaying 4 Indicates playing is about to be started.

kPlayPaused 8 Indicates playing is paused.

kRecordPaused 16 Indicates recording is paused.

kStopping 32 Indicates the sound channel is about to be
stopped.

kSetupStore 64 Indicates recording is about to be started.

C H A P T E R 7

Sound

Sound Reference 7-37
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Slot descriptions

direction A symbol indicating whether the sound channel is to be
used for input or output. This slot can have two valid
values: 'record or 'play. It is set to 'record by the
NewRecording method. If this slot is invalid or nil, 'play
is assumed.

outputDevice Specifies the device that is to be used for sound
playback. If nil, then playback is done on the device
specified by the user configuration variable of the same
name. If that is nil, then the internal speaker is used.
The default value of outputDevice is nil. Device
constants are listed in Table 7-3 (page 7-26).

inputDevice Specifies the device that is to be used for sound
recording. If nil, then recording is done on the device
specified by the user configuration variable of the same
name. If that is nil, then the internal microphone is
used. The default value of inputDevice is nil. Device
constants are listed in Table 7-3 (page 7-26).

inputGain An integer value between 0 and 255 that specifies how
much the input signal is to be amplified before it is
recorded. If nil, then the input gain specified by the
user configuration variable of the same name is used. If
that is nil, then a suitable default value is used to
determine an initial value for input gain. The
SetInputGain method can change the input gain for the
channel, but it does not change the value of the
inputGain slot, which remains at its initial setting.
For more details on the input gain setting, see “Setting
the Input Gain” (page 7-14).

inputBlockSize The size used by NewInputBlock for the VBO to record
into. The default value is 65536 bytes. You can change
the size, but the timing of the sound manager may not
work for sizes that are too small.

The following methods are supplied by protoSoundChannel. They are listed in
alphabetical order.

C H A P T E R 7

Sound

7-38 Sound Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Close 7

soundChannel:Close()

Closes an open sound channel.

return value Undefined; do not rely on it.

DISCUSSION

This method frees the system resources allocated for the sound channel. It
throws the exception |evt.ex.fr| if an error occurs.

IMPORTANT

The operating system memory allocated for a sound channel
by the Open method is not released when the soundChannel
frame is garbage-collected. You must call the Close method
explicitly to free this memory and avoid memory leaks. ◆

GetInputGain 7

soundChannel:GetInputGain()

Returns the input gain value currently used by the sound channel.

DISCUSSION

The channel must be open. If it is not, an exception with the error code
-30010 is thrown. For information on the meaning of values this method
returns, see “Setting the Input Gain” (page 7-14).

GetVolume 7

soundChannel:GetVolume()

Returns the playback volume level for the channel.

return value The channel’s playback volume, expressed in decibels.
The integer value 0 corresponds to silent, and values 1,
2, 3, and 4 correspond to decibel levels -18 dB, -6 dB, -3
dB, and 0 dB (unity gain) respectively. This method
returns nil when the channel does not specify its own
volume but instead inherits it from user preference

C H A P T E R 7

Sound

Sound Reference 7-39
Preliminary Draft.  Apple Computer, Inc. 4/21/97

settings (the soundVolumeDb variable), which is the
default behavior.

DISCUSSION

The channel must be open. If it is not, an exception with the error code
-30010 is thrown.

If the unit has a hardware volume control, and the sound channel is playing,
this method returns the actual playing volume; otherwise, it returns the
channel volume as set by the SetVolume method. If no volume has been set
using SetVolume, and the channel is not playing, this method returns nil.

IsActive 7

soundChannel:IsActive()

Returns true if the sound channel is active.

return value True if the sound channel is active (playing, recording,
or paused), and nil if it is not (Start has not yet been
called).

IsOpen 7

soundChannel:IsOpen()

Returns true if the sound channel is open.

return value True if the sound channel is open or nil if it is not.

IsPaused 7

soundChannel:IsPaused()

Returns true if the sound channel is paused.

return value True if the sound channel is paused, and nil if it is not.

C H A P T E R 7

Sound

7-40 Sound Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

NewInputBlock 7

soundChannel:NewInputBlock(Callback)

Creates and returns a new sound frame that has its slots set up for recording
speech at the default combination of fidelity and compression.

Callback A callback function that you provide, and that is called
when the sound frame fills or recording stops. It must
accept two parameters, state and result, as described on
page 7-31.

return value A sound frame ready to accept input, that looks like this:

{
_proto: protoSoundFrame,
samples: vbo, // size determined by inputBlockSize
Callback: callback, // function specified by caller
dataType: k8Bit, // eight bits per sample
compressionType: kSampleMuLaw, // MuLaw encoded
samplingRate: 10800, // 10K samples per second
}

DISCUSSION

This method allocates a VBO and stores it in the 'samples slot of the returned
sound frame. This is where the recorded data is stored. The size of the VBO
is determined by the value of the inputBlockSize slot in the sound channel,
which defaults to 65536 bytes.

The sound frame returned has reasonable settings for voice recording.
However, you need not rely on these specific values. If you require specific
settings, override them yourself.

NewRecording 7

soundChannel:NewRecording()

Creates and returns a new protoSoundChannel frame that is properly
initialized for sound input.

return value A frame whose _proto slot is set to protoSoundChannel
and whose direction slot is set to 'record.

C H A P T E R 7

Sound

Sound Reference 7-41
Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

Note that you send this message directly to the proto itself, not your
instantiation of the proto. Sending this message creates a new sound channel
based on the proto. Here is an example of how to call this method:

myChannel := protoSoundChannel:NewRecording();

Open 7

soundChannel:Open()

Instantiates and opens the sound channel.

return value Undefined; do not rely on it.

DISCUSSION

This method allocates system resources for the sound channel. It throws the
exception |evt.ex.fr| if an error occurs.

When you are done using the sound channel, you must close it using the
Close method; otherwise, memory is not freed.

Pause 7

soundChannel:Pause()

Temporarily suspends play or recording in progress or resumes play or
recording already paused.

return value A sound result frame (page 7-31) indicating which
sound frame was stopped, or nil if no sound was
currently playing or recording.

DISCUSSION

Scheduled sounds are unaffected by this method.

This method throws the exception |evt.ex.fr| if an error occurs.

C H A P T E R 7

Sound

7-42 Sound Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Schedule 7

soundChannel:Schedule(soundFrame)

Queues a sound frame for playback or recording.

soundFrame A sound frame to be scheduled for playback, or an
empty sound frame (obtained by calling NewInputBlock)
to be used for recording. For details on sound frames,
see “Sound Frame” (page 7-28).

return value Undefined; do not rely on it.

DISCUSSION

If soundFrame defines a callback function, the sound channel sends the
callback message to soundFrame when play or recording completes.

Note that sounds can be scheduled during a playback or recording operation.

This method can throw the exception |evt.ex.fr| if an error occurs.

SetInputGain 7

soundChannel:SetInputGain(gain)

Sets the amplification applied to the signal coming from the input device.

gain An integer from 0 (no amplification) to 255 (maximum
amplification) specifying the amplification to be applied
to the input signal.

return value Undefined; do not rely on it.

DISCUSSION

This method changes the input gain, in real time, of the current input
channel (and because current hardware supports only one input source at a
time, all other active input channels).

This method does not change the value of the inputGain slot in the sound
channel frame.

SetInputGain can be called only on open channels, otherwise an exception is
thrown.

C H A P T E R 7

Sound

Sound Reference 7-43
Preliminary Draft.  Apple Computer, Inc. 4/21/97

SEE ALSO

For more information on gain values, see “Setting the Input Gain”
(page 7-14).

SetVolume 7

soundChannel:SetVolume(volume)

Sets the playback volume level for the channel.

volume An integer or nil. Value 0 corresponds to silent, and
values 1, 2, 3, and 4 correspond to decibel levels -18 dB,
-6 dB, -3 dB, and 0 dB (unity gain) respectively. If
volume is nil, then the driver's master (preferred)
volume is used.

return value Undefined; do not rely on it.

Start 7

soundChannel:Start(async)

Starts the sound channel playing or recording.

async Pass a non-nil value to play sounds asynchronously. If
this value is nil, control does not return until the entire
play or record queue is empty (all scheduled sound
frames are played or recorded).

return value Undefined; do not rely on it.

DISCUSSION

The sound channel begins playing or recording sound frames in the order
they were scheduled.

This method throws the exception |evt.ex.fr| if an error occurs.

C H A P T E R 7

Sound

7-44 Sound Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Stop 7

soundChannel:Stop()

Stops playing or recording into the current sound frame, if any.

return value A sound result frame (page 7-31) indicating which
sound frame was stopped, or nil if no sound was
currently playing or recording.

DISCUSSION

This method also sends the Callback message, if defined, to each sound
frame in the specified channel’s queue. The Callback state parameter is set to
kSoundAborted.

When this method returns, all scheduled sounds will have received a
Callback message, and the queue will be empty.

This method throws the exception |evt.ex.fr| if an error occurs.

protoSoundFrame 7

This proto for a sound frame is new for Newton OS 2.1. Not only does it
contain all the slots described as valid for sound frame objects (page 7-28),
but it also includes some methods that make it easier to work with. Note that
sound frames that are not derived from protoSoundFrame do not support
these methods. To convert an older sound frame to use this proto, simply
add a _proto slot containing the magic pointer for protoSoundFrame.

Besides all the slots in older sound frame objects (page 7-28),
protoSoundFrame includes the additional length slot and the methods
described in this section.

Slot description

length The number of sound samples stored in the samples slot.
This slot is set only by the SetRecordingLength method
of protoSoundFrame.

C H A P T E R 7

Sound

Sound Reference 7-45
Preliminary Draft.  Apple Computer, Inc. 4/21/97

GetPlayingTime 7

soundFrame:GetPlayingTime()

Returns the playing time of the sound, in seconds.

return value Real number describing the playing time of the sound,
in seconds.

DISCUSSION

This is useful for creating progress indicators for the sound.

GetSampleCount 7

soundFrame:GetSampleCount()

Returns the number of samples in the sound frame.

return value An integer indicating the number of samples in the
samples slot of the sound frame.

DISCUSSION

First, this method checks for the length slot in the sound frame. If that slot
exists, its value is returned. If it does not exist or is nil, this method
calculates the number of samples based on the size of the samples binary
object divided by the number of bytes in each sample.

Note that the length slot in the sound frame is set only by the
SetRecordingLength method.

GetSampleSize 7

soundFrame:GetSampleSize()

Returns the size of each sample, in bytes.

return value An integer indicating the size of each sample, in bytes.
This is either 1 or 2, in the 2.1 OS.

C H A P T E R 7

Sound

7-46 Sound Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

GetSamplingRate 7

soundFrame:GetSamplingRate()

Returns the rate at which the data in the sound frame was (or will be)
recorded.

return value Real or integer value describing the sampling rate of
data in the samples slot. This is taken from the
samplingRate slot of the sound frame. If that slot is nil,
this method returns the value 22026.43172.

SetRecordingLength 7

soundFrame:SetRecordingLength(numSamples, Callback)

Sets the length of the VBO holding the recorded sound samples.

numSamples An integer expressing the number of samples to include
in the VBO stored in the samples slot of the sound frame.

Callback A callback function that you provide, and that is
executed when the SetLength operation on the VBO is
completed. This function may be necessary for an
interface in which the user can switch rapidly from
recording to playback. This slot may hold the value nil
or a callback function that takes no parameters. Its
return value is not used.

return value Undefined; do not rely on it.

DISCUSSION

You should call SetRecordingLength after the user stops recording sound
input. This method sets the length slot in the sound frame to the numSamples
value, then it uses an AddDeferredSend call to truncate the length of the VBO
to that same value (multiplied by the size of each sample in bytes).

Since the methods GetPlayingTime and GetSampleCount rely on the length slot,
both return correct values immediately after SetRecordingLength has been
called.

C H A P T E R 7

Sound

Sound Reference 7-47
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Functions 7
This section describes the global functions used in the sound interface.

GetRegisteredSound 7

GetRegisteredSound(symbol)

Returns the sound frame for a registered sound so it can be played.

symbol A symbol identifying the sound to return. This is the
symbol passed to RegSound when the sound was
registered.

return value The sound frame for the sound identified by symbol. For
details on sound frames, see “Sound Frame”
(page 7-28). If the sound is not found in the registry, the
sound frame for the simpleBeep sound is returned.

DISCUSSION

Note

This global function exists in both the Newton 2.0 and 2.1
operating systems. It was not previously documented for
2.0. ◆

PlaySound 7

PlaySound(soundFrame)

Plays a sound asynchronously.

soundFrame The sound frame to be played. For details, see “Sound
Frame” (page 7-28). Or you can specify a binary object
of the class 'TDTMFCodec, which contains synthesizer
data. In this case, the synthesized sound is played by
the synthesizer codec.

return value Undefined; do not rely on it.

C H A P T E R 7

Sound

7-48 Sound Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

The sound is played asynchronously; that is, this function returns
immediately and the sound is played as a background process. When the
sound is finished playing, the system calls the callback function in
soundFrame, if it’s defined.

When passed a binary object of the class 'TDTMFCode, and containing
synthesizer data, PlaySound is a shortcut for invoking the synthesizer codec
to play the sound. This shortcut works for the whole family of PlaySoundxxx
functions.

Note that PlaySound is not a new function in the Newton 2.1 OS. It was
inadvertently omitted from the Sound chapter in Newton Programmer’s Guide
for Newton 2.0 and Newton Programmer’s Reference. This function was
documented for the 1.x system, still works the same under the 2.1 OS, and is
documented again in this chapter for completeness.

SEE ALSO

For more information about the limitations of this function, see “PlaySound
Errata” (page 7-24).

For more information about using the synthesizer codec, see “Synthesizing
Sound” (page 7-17). For more information about the format of synthesized
sound data, see “Synthesized Sound Data Format” (page 7-32).

PlaySoundEffect 7

PlaySoundEffect(soundFrame, volume, type)

Plays a sound effect asynchronously, if the user preferences allow the type of
effect.

soundFrame The sound frame to be played. For details, see “Sound
Frame” (page 7-28). Or you can specify a binary object
of the class 'TDTMFCodec, which contains synthesizer

C H A P T E R 7

Sound

Sound Reference 7-49
Preliminary Draft.  Apple Computer, Inc. 4/21/97

data. In this case, the synthesized sound is played by
the synthesizer codec.

volume The volume at which to play the sound. If you specify
nil, the system volume is used.

type Can be one of the symbols 'pen, 'alarm, or 'action,
identifying what type of sound effect this is.

return value Undefined; do not rely on it.

DISCUSSION

The sound is played only if the user preferences allow sounds of the
specified type. For example, if the user preference setting turns off pen sound
effects, and type is 'pen, then the sound is not played.

This function is preferred to all other versions of PlaySound for playing sound
effects. If the sound you want to play is not one of the three types of sound
effects, then it’s best to use a different function for playing sounds.

If type is not 'pen, 'alarm, or 'action, then the sound is played at the
specified volume (the same as PlaySoundIrregardlessAtVolume). After this
function executes, the volume is reset back to the level it was at before this
function executed; that is, the system volume is not permanently changed.

When passed a binary object of the class 'TDTMFCode, and containing
synthesizer data, PlaySoundEffect is a shortcut for invoking the synthesizer
codec to play the sound. This shortcut works for the whole family of
PlaySoundxxx functions.

Note that PlaySoundEffect is not a new function in the Newton 2.1 OS. It is
documented in Newton Programmer’s Reference, but is duplicated here with
some clarification.

SEE ALSO

For more information about using the synthesizer codec, see “Synthesizing
Sound” (page 7-17). For more information about the format of synthesized
sound data, see “Synthesized Sound Data Format” (page 7-32).

C H A P T E R 7

Sound

7-50 Sound Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

RegSound 7

RegSound(symbol, soundFrame)

Registers a sound with the system so it is listed as a choice for the system
alert sound.

symbol A symbol identifying the sound. Be sure to append your
developer signature to this symbol so the sound is
uniquely identified.

soundFrame A sound frame, as described in “Sound Frame”
(page 7-28). This frame should additionally contain a
userName slot that holds a string. This string is used as
the value of the item slot in the frames constructed by
the SoundList function.

return value Undefined; do not rely on it.

DISCUSSION

To unregister a sound, use UnRegSound.

You can get a list of all registered sounds by calling SoundList.

Note

This global function exists in both the Newton 2.0 and 2.1
operating systems. It was not previously documented for
2.0. ◆

SoundList 7

SoundList()

Returns an array of sounds registered by RegSound.

return value An array of frames. Each frame contains the following
slots:
item A string naming the sound.
soundSymbol A unique symbol identifying the sound.

C H A P T E R 7

Sound

Sound Reference 7-51
Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

This function returns an alphabetized array of sounds suitable for use
directly in a picker list. For example, you could use this array as the value of
the labelCommands slot of a protoLabelPicker.

Use the function GetRegisteredSound to return the sound frame for a
registered sound, given its symbol.

Note

This global function exists in both the Newton 2.0 and 2.1
operating systems. It was not previously documented for
2.0. ◆

UnRegSound 7

UnRegSound(symbol)

Unregisters a sound previously registered by RegisterSound.

symbol A symbol identifying the sound to unregister.

return value Undefined; do not rely on it.

DISCUSSION

Note

This global function exists in both the Newton 2.0 and 2.1
operating systems. It was not previously documented for
2.0. ◆

C H A P T E R 7

Sound

7-52 Sound Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Sound Error Codes 7

Table 7-8 lists error codes returned by the sound interface and describes
possible causes for each.

Table 7-8 Sound interface error codes

Error code Possible causes

-30000 Error scheduling node; or codec channel aborted; or no driver
found; or channel open; or no sound port; or attempt to do
synchronous input.

-30002 Internal sound manager error

-30003 All sound stopped (power off or other problem)

-30006 Internal resource conflict

-30007 Internal resource conflict

-30008 Start called with nothing scheduled; or cancel called for
nonexistent node; or codec called with zero-length samples.

-30009 Unable to create codec; or bad value for sndFrameType slot; or
bad value for compressionType slot; or bad value for dataType
slot; or invalid samplingRate slot; or input not implemented
on target hardware; or driver doesn't support output or input.

-30010 Channel aborted (kChannelAborted returned to sound frame
Callback method); or channel stopped (returned to sound
frame Callback method); or attempt to make call to closed
channel; or unable to start channel; or unable to pause
channel; or unable to schedule block; or unable to cancel
channel; or unable to stop channel.

-30011 Channel cancelled (sound frame Callback method called); or
channel aborted (sound frame Callback method called).

C H A P T E R 7

Sound

Sound Reference 7-53
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Summary of Sound 7

Constants 7

kDefaultDevice // 0x00. Default input or output device
kInternalSpeaker // 0x01. Internal speaker
kInternalMic // 0x04. Internal microphone
kLineOut // 0x08. Line out on the interconnect bus
kLineIn // 0x10. Line in on the interconnect bus

kSampleStandard // 0. Uncompressed 8-bit samples
kSampleMuLaw // 1. 8-bit samples encoded by the muLaw compressor
kSampleLinear // 6. Uncompressed 16-bit samples

k8Bit // 8. Samples are 8 bits each
k16Bit // 16. Samples are 16 bits each

"TMuLawCodec" // MuLaw codec
"TIMACodec" // IMA codec
"TGSMCodec" // GSM codec
"TDTMFCodec" // Synthesizer codec

Data Structures 7

Sound Frame 7

soundFrame := {
sndFrameType: symbol, // 'simpleSound or 'codec
codecName: string, // codec identifier
bufferCount: integer, // number of codec buffers
bufferSize: integer, // bytes in each codec buffer
samples: binary, // sound samples or synthesizer data
samplingRate: realOrInteger, // sampling rate per second
compressionType: integer, // encoding format of data
compressionRatio: real, // ratio of samples to bytes
dataType: integer, // sample size (8 or 16 bits)

C H A P T E R 7

Sound

7-54 Sound Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

volume: realOrInteger, // volume level
start: integer, // index of first sample to play
count: integer, // number of samples to play
loops: integer, // number of times to repeat sound
Callback: func(state, result)..., // called when play/record finishes
}

Sound Result Frame 7

soundResultFrame := {
sound: frame, // sound frame that was paused or stopped
index: integer, // index into sample data where stopped
}

User Configuration Variables 7

inputGain // default input gain used during recording
inputDevice // default input device used for recording
outputDevice // default output device used for playback
soundVolumeDb // current system sound volume, in decibels
alarmVolumeDb // current system alarm volume, in decibels

Synthesized Sound Data Format 7

type 'DTMF' {
unsigned integer; /* Parameter block type. Set to 1 */
unsigned integer; /* Synthesis type (1-5) */
unsigned integer; /* Reserved set to 0 */
unsigned integer; /* Synth loop count */
unsigned integer = $$CountOf(DTMFTones); /* Number of tone blocks */

wide array DTMFTones {
unsigned integer; /* frequency integer part */
unsigned integer; /* frequency fractional part */
unsigned integer; /* sustain amplitude */
unsigned integer; /* leading silence in ms */
unsigned integer; /* attack in ms */
unsigned integer; /* decay in ms */
unsigned integer; /* sustain in ms */
unsigned integer; /* release in ms */
unsigned integer; /* peak amplitude */
unsigned integer; /* trailing silence in ms */

C H A P T E R 7

Sound

Sound Reference 7-55
Preliminary Draft.  Apple Computer, Inc. 4/21/97

};
};

soundRecorder Object 7

sr := GetRoot().soundRecorder;
sr := {
fSoundFrameSlots: frame, // sound frame overrides for recording
fInputGain: integer, // sets inputGain slot in the sound channel
fInputDevice: integer, // sets inputDevice slot in the sound channel
fOutputDevice: integer, // sets outputDevice slot in the sound channel
fCallback: func(array)..., // returns sounds when recorder is closed
OpenRecord: func(callback)..., // opens sound recorder for recording
OpenPlay: func(soundFrame)..., // opens sound recorder for playing
}

Protos 7

protoRecorderView 7

aProtoRecorderView := {
_proto: protoRecorderView,
elapsedTime: integer, // seconds of recorded sound
statusText: {

SetState: func(oldState, newState, hasSound)..., // state changed
}

GetSounds: func()..., // gets array of sound frames
}

protoSoundChannel 7

aProtoSoundChannel := {
_proto: protoSoundChannel,
direction: symbol, // 'record or 'play
outputDevice: integer, // output device identifier
inputDevice: integer, // input device identifier
inputGain: integer, // 0-255 or nil (default is used)
inputBlockSize: integer, // VBO size in bytes, for recording
Close: func()..., // closes open sound channel
GetInputGain: func()..., // gets input gain setting

C H A P T E R 7

Sound

7-56 Sound Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

GetVolume: func()..., // gets volume setting
IsActive: func()..., // is channel active?
IsOpen: func()..., // is channel open?
IsPaused: func()..., // is channel paused?
NewInputBlock: func(Callback)..., // creates new sound frame/VBO
NewRecording: func()..., // creates new sound channel for recording
Open: func()..., // opens channel
Pause: func()..., // pauses channel
Schedule: func(soundFrame)..., // schedules sound frame
SetInputGain: func(gain)..., // sets input gain
SetVolume: func(volume)..., // sets volume
Start: func(async)..., // starts channel playing/recording
Stop: func()..., // stops channel playing/recording
}

protoSoundFrame 7

aProtoSoundFrame := {
_proto: protoSoundFrame,
length: integer, // number of samples in samples slot
GetPlayingTime: func()..., // returns playing time in seconds
GetSampleCount: func()..., // returns number of samples
GetSampleSize: func()..., // returns size of each sample in bytes
GetSamplingRate: func()..., // returns sampling rate
SetRecordingLength: func(numSamples, Callback)..., // sets VBO size
}

Functions 7

GetRegisteredSound(symbol)
PlaySound(soundFrame)
PlaySoundEffect(soundFrame, volume, type)
RegSound(symbol, soundFrame)
SoundList()
UnRegSound(symbol)

8-1
Preliminary Draft.  Apple Computer, Inc. 4/21/97

C H A P T E R 8

Dial-In Networks 8

The dial-in network application program interface (API) allows you to add
dial-in networks to augment the built-in SprintNet and ConcertNet networks
already in the system. A dial-in network basically provides phone numbers
for an application (or transport) to call to get access to the network.

For example, a CompuServe mail client would need to register a
CompuServe dial-in network to supply numbers for connecting to the
CompuServe network.

The primary function of a dial-in network is to supply phone numbers to call
given a particular location. It supplies these phone numbers by providing a
function to be called by elements such as the connection slip and the Internet
Enabler. This function returns the possible numbers.

Dial-in networks are stored in a registry in the system. To register a dial-in
network with the system, you must put a dial-in network into this registry. A
developer does this by calling the registration function RegDialinNetwork,
passing in a network frame that describes the dial-in network; see “Network
Frame” (page 8-2).

Figure 8-0
Listing 8-0
Table 8-0

C H A P T E R 8

Dial-In Networks

8-2 Dial-in Networks Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Dial-in Networks Reference 8

Data Structures 8
Two data structures are described in the following sections: access frames
and network frames.

Access Frame 8

An access frame contains the following slots:

Slot descriptions

mailNewtwork A symbol for the network.
mailPhone A string for the phone number.
baud An integer indicating the baud rate.

Network Frame 8

A network frame contains the following slots:

Slot descriptions

title A string describing the network, such as "SprintNet" or
"ConcertNet".

id A symbol uniquely identifying the network,
GetAccessNumbers A function called to get access numbers for a worksite

or city.

GetAccessNumbers 8

networkFrame:GetAccessNumbers(worksiteFrame, cityFrame)

Called to retrieve an array of access numbers for a given worksite or city.

worksiteFrame A frame of the format of a Names worksite soup entry;
see “Worksite Entries” (page 16-22) in Chapter 16,

C H A P T E R 8

Dial-In Networks

Dial-in Networks Reference 8-3
Preliminary Draft.  Apple Computer, Inc. 4/21/97

“Built-in Applications and System Data Reference,” in
Newton Programmer’s Reference .

cityFrame A frame with the same format as the frames returned by
the GetCityEntry function; see “GetCityEntry”
(page 16-79) in Newton Programmer’s Reference.

return value Return either an array of access frames, or nil if no
numbers are available; access frames are described in
“Access Frame” (page 8-2). You should never, however,
return the empty array ([]).

DISCUSSION

It is up to you to implement a mechanism to store and retrieve these access
numbers. One possible implementation is to store a frame containing this
data in your package. If this data needs to be dynamic, to add new access
numbers for example, you will probably want to create a soup for this data.

Functions 8
The following functions are provided.

RegDialinNetwork 8

RegDialinNetwork(networkSym, networkFrame)

Registers a new dial-in network with the system.

networkSym A symbol uniquely identifying the network

networkFrame A network frame, as described in “Network Frame”
(page 8-2).

return value Undefined; do not rely on it.

DISCUSSION

This function should usually be called from your part’s InstallScript, as in
the following code sample:

DefineGlobalConstant ('dudeNetFrame,
{

C H A P T E R 8

Dial-In Networks

8-4 Dial-in Networks Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

title: "DudeNet",
id: 'dudeNet,
GetAccessNumbers: func(worksite,city)

begin
local result := [];
if worksite then

AddArraySlot (
result,
{
mailPhone:"111-1111",
mailNetwork: 'dudeNet,
baud: 9600
}

)
if city then

AddArraySlot (
result,
{

mailPhone:"222-2222",
mailNetwork: 'dudeNet,
baud: 2400

}
)

result;
end

}
);

partData := {};
InstallScript := func(partFrame,removeFrame) //auto part

begin
call kRegDialinNetworkFunc with ('dudeNet,dudeNetFrame);

end;

UnRegDialinNetwork 8

UnRegDialinNetwork(networkSym)

Unregisters a dial-in network from the system which had been registered
with a call to RegDialinNetwork.

networkSym The symbol used in the call to RegDialinNetwork.

return value Undefined; do not rely on it.

C H A P T E R 8

Dial-In Networks

Dial-in Networks Reference 8-5
Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

This function should usually be called from your part’s RemoveScript.

GetLocAccessNums 8

GetLocAccessNums(entry, which)

Retrieves an array of access frames given a location frame and an array of
dial-in network symbols to look for.

entry A location frame. Can be a worksite or a city location. If
nil, GetLocAccessNums uses the current emporium and
city location.

For information on these various entities see the
following sections of Chapter 16, “Built-in Applications
and System Data Reference,” in Newton Programmer’s
Reference :
worksites “Worksite Entries” (page 16-22), worksite

entries are a type of Names soup entry.
cities “GetCityEntry” (page 16-79), the

GetCityEntry function returns a city
location frame.

the current emporium
“User Configuration Variables”
(page 16-101), the currentEmporium
variable contains an alias to a Names
worksite soup entry.

which An array of network symbols. Usually the transport's
networkSymbols array if the Mail Enabler is used.
Matches to all these symbols are returned.

return value Returns an array of access frames; see “Access Frame”
(page 8-2).

Note

If the mail transport does not contain the networkSym for the
dial-in network within its networkSymbols slot, the network
phone numbers will not appear in the connection slip. ◆

C H A P T E R 8

Dial-In Networks

8-6 Dial-in Networks Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

GetAllDialinNetworks 8

GetAllDialinNetworks()

Returns an array of all the dial-in network frames registered in the system;.

return value An array of network frames, see “Network Frame”
(page 8-2).

GetDialinNetwork 8

GetDialinNetwork(networkSym)

Returns the dial-in network frame that corresponds to networkSym.

networkSym The symbol of the network whose frame to return.

return value A network frame; see “Network Frame” (page 8-2).

C H A P T E R 8

Dial-In Networks

Dial-in Networks Reference 8-7
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Dial-in Networks Summary 8

Data Structures 8

Access Frame 8
accessFrame :=
{

mailNewtwork: symbol, // the network’s symbol
mailPhone: string // the phone number
baud: integer // the baud rate

}

Network Frame 8
networkFrame :=
{

title: string, //name of network
id: symbol, //identies the network
GetAccessNumbers: function, //get local access numbers

}

Functions 8
RegDialinNetwork(networkSym, networkFrame) //regs dial-in network
UnRegDialinNetwork(networkSym) // unregs dial-in network
GetLocAccessNums(entry, which) // gets local access number
GetAllDialinNetworks() // gets all dial-in networks
GetDialinNetwork(networkSym) // // gets a dial-in network

C H A P T E R 8

Dial-In Networks

8-8 Dial-in Networks Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

About the IrDA Communication Tool 9-1
Preliminary Draft.  Apple Computer, Inc. 4/21/97

C H A P T E R 9

IrDA Communication Tool 9

This chapter describes the IrDA (Infrared Data Association) communication
tool built into the Newton 2.1 OS. This communication tool is designed to be
accessed and used through the Endpoint interface. For more information
about using the Endpoint interface for communications, see Chapter 23,
“Endpoint Interface” in Newton Programmer’s Guide.

About the IrDA Communication Tool 9

This section includes general information about the IrDA communication
tool.

Overview 9
The Newton IrDA tool is a communication tool implementation of the
Infrared Data Association's standard for infrared communication. The IrDA
standard consists of a hardware serial infrared interface specification (SIR), a
link access protocol specification (IrLAP), a link management multiplexer
protocol specification (IrLMP), a transport protocol specification (IrTinyTP),
and other protocol layers.

Figure 9-0
Listing 9-0
Table 9-0

C H A P T E R 9

IrDA Communication Tool

9-2 Using the IrDA Tool

Preliminary Draft.  Apple Computer, Inc. 4/21/97

The Newton IrDA tool minimally implements the IrLMP and IrLAP
protocols and communicates with a serial driver that implements the SIR
protocol.

Terminology 9
Here is a quick list of the IrDA protocol levels mentioned in this chapter. If
you need more definitions and protocol details, you can get them from the
IrDA world-wide web site (http://www.irda.org).
SIR (Serial IR), hardware protocol for 9600 to 115.2 Kbps

data transmission.
FIR (Fast serial IR), hardware protocol for 115.2 Kbps to 4

Mbps data transmission.
IrLAP (Link Access Protocol). Built on top of SIR and/or FIR.
IrLMP (Link Management Protocol)—Multiplexor, Name

Server, Endpoints. Built on IrLMP.
TinyTP (Transport), built on IrLMP.
IrComm 3-wire/9-wire serial/parallel-like interface. Built on

TinyTP.

The only pieces that are supported in this implementation of the Newton
IrDA tool are: SIR, IrLAP and IrLMP. This is the minimum required set to be
IrDA compliant.

Using the IrDA Tool 9

Clients of the IrDA tool access it using the Endpoint interface. The IrDA tool
service identifier is kCMSIrDA ("irda"). Here is an example of how to create an
endpoint that uses the IrDA communication tool:

myIrDAEP := {_proto:protoBasicEndpoint};
myOptions := [

{ label: kCMSIrDA,
 type: 'service,
 opCode: opSetRequired }];

results := myIrDAEP:Instantiate(myIrDAEP, myOptions);

C H A P T E R 9

IrDA Communication Tool

Using the IrDA Tool 9-3
Preliminary Draft.  Apple Computer, Inc. 4/21/97

All IrDA options are evaluated at endpoint Connect/Listen time only. For
your convenience, the options may be specified earlier at instantiate or bind
time, at connect/listen time, or even after a connection has been established,
but they will only be processed (evaluated) at connect/listen time. Once the
connection has been established, you must disconnect and reconnect to
change the options.

Making a Connection 9
Establishing a connection with an IrDA device is a multi-staged process. The
first stage of the connection process is the discovery phase. In this stage, the
Newton unit probes and accumulates a list of other IrDA devices within
beaming range. Each device is loosely identified by a service hints field
(PDA/Computer/Printer/etc) and a device nickname. The
kCMOIrDADiscoveryInformation option is used to specify which device to use
and also how the Newton unit should appear to other devices that probe it
(in a Listen operation).

The second stage of the connection process involves a name lookup of the
service to use, or registry of the service provided (in a Listen operation). The
kCMOIrDAConnectInformation option is used to specify this information.

The final stage of the connection process is to make the connection. At this
point, a negotiation phase takes place between the Newton unit and the
other IrDA device. The negotiation parameters are baud rate, data size
(receive buffer size), window size (number of receive buffers), and link
disconnect time. The following options are used to define these negotiation
parameters: kCMOSerialBitRate, kCMOIrDAReceiveBuffers, and
kCMOIrDALinkDisconnectTimeout.

Note that the kCMOSerialBitRate option is not documented in this chapter
because it’s already covered in the “Built-in Communications Tools” chapter
of Newton Programmer’s Reference. It works slightly different when used with
the IrDA tool; it specifies the maximum speed at which you want the
Newton device to communicate. The value you specify can be negotiated
downwards by the device at the other end of the connection. The default
value for the IrDA tool is k115200bps, or 115200 bits per second.

For convenience and future compatibility, the known higher FIR speeds
defined for IrDA of 576000, 1152000, and 4000000 bps are accepted but

C H A P T E R 9

IrDA Communication Tool

9-4 Using the IrDA Tool

Preliminary Draft.  Apple Computer, Inc. 4/21/97

treated as k115200bps (the highest possible speed currently supported by the
hardware).

Below is an example NewtonScript option array that specifies all the options
that can be used with either a Connect or Listen request. Note that some
fields of some options apply only to Connect while other fields apply only to
Listen.

Typically, the only option that needs to be supplied is the
kCMOIrDAConnectInformation option, to either identify the Newton device or
to identify the device that you are connecting to. And even this option may
be omitted if two Newton devices are communicating peer to peer, since they
both use the default connection names.

fEndpointConnectOptions := [
{ label: kCMOIrDADiscoveryInformation, // IrDA discovery information
 type: 'option,
 opCode: opSetRequired,
 data: {

arglist: [
8,
kIrDASvcHintPDAPalmtop,
kIrDASvcHintPrinter,
0,
1,

],
typelist: [

'struct,
'uLong, // num probe slots, default is 8
'uLong, // my service hint, default is PDA
'uLong, // service hint mask
'uLong, // returned devAddr of peer device
'uLong, // use standard media busy check?

],
},

},
{ label: kCMOIrDAConnectInformation, // IrDA connect info

type: 'option,
opCode: opSetRequired,
data: {

arglist: [
0,
0,
4, // e.g. strlen("Test")
5, // e.g. strlen("IrLPT")

C H A P T E R 9

IrDA Communication Tool

Using the IrDA Tool 9-5
Preliminary Draft.  Apple Computer, Inc. 4/21/97

"Test",
"IrLPT",

],
typelist: [

'struct,
'uLong, // my lsap id, default is 0
'uLong, // peer lsap id, default is 0
'uLong, // my name length, default is 1
'uLong, // peer name length, default is 1
['array, 'char, 0], // my name, default is "X"
['array, 'char, 0], // peer name, default is "X"

],
},

},
{ label: kCMOSerialBitRate, // serial bit rate

type: 'option,
opCode: opSetRequired,
data: {

arglist: [
115200,

],
typelist: [

'struct,
'uLong, // max negotiate speed, default is 115.2k

],
},

},
{ label: kCMOIrDAReceiveBuffers, // IrDA recv buffers info

type: 'option,
opCode: opSetRequired,
data: {

arglist: [
2048,
1,

],
typelist: [

'struct,
'uLong, // size of each receive buffer, default is 512
'uLong, // number of receive buffers used, default is 1

],
},

},
{ label: kCMOIrDALinkDisconnectTimeout, // link disconnect threshold

type: 'option,
opCode: opSetRequired,
data: {

C H A P T E R 9

IrDA Communication Tool

9-6 Using the IrDA Tool

Preliminary Draft.  Apple Computer, Inc. 4/21/97

arglist: [
8,

],
typelist: [

'struct,
uLong, // time before disconnect, default is 40 seconds

],
},

},
];

If the above example option is used to connect, the Newton limits discovered
devices to printers, and connects to the IrDA device with the class name
"IrLPT". The Newton will communicate (up to) 115.2 Kbps, and will receive
data using one 2K buffer. If there is no activity from the peer device, then the
Newton will disconnect after 8 seconds.

If the above example option is used to listen, the Newton advertises itself as
a palmtop device with the class name "Test". The Newton will communicate
(up to) 115.2 Kbps, and will receive data using one 2K buffer. If there is no
activity from the peer device, then the Newton will disconnect after 8
seconds.

Getting IrDA Tool Information 9
After a connection has been made, you may want to know various results of
the connection such as connection speed, buffer size, and so on. The
following example option can be used with the endpoint Option method to
get this information.

local connectedOptions :=
[

{ label: kCMOIrDADiscoveryInformation, // IrDA discovery info
type: 'option,
opCode: opGetCurrent,
data: {

arglist: [
0,
0,
0, // service hints of discovered dev
0, // dev addr of discovered device
0,

],

C H A P T E R 9

IrDA Communication Tool

Using the IrDA Tool 9-7
Preliminary Draft.  Apple Computer, Inc. 4/21/97

typelist: [
'struct,
'uLong, // num probe slots, def:8
'uLong, // my svc hint, default: kIrDASvcHintPDAPalmtop
'uLong, // service hint mask
'uLong, // returned devAddr of peer device
'uLong, // use standard media busy check?

],
},

},
{ label: kCMOSerialBitRate, // serial bit rate

type: 'option,
opCode: opGetCurrent,
data: {

arglist: [
0, // negotiated speed

],
typelist: [

'struct,
'uLong, // max negotiate speed, def: 115.2k

],
},

},
{ label: kCMOIrDAReceiveBuffers, // IrDA recv buffers info

type: 'option,
opCode: opGetCurrent,
data: {

arglist: [
0, // negotiated buffer size
0, // negotiated max buffers in use

],
typelist: [

'struct,
'uLong, // size of ea recv buf, def: 512
'uLong, // num recv bufs used, def: 1

],
},

},
{ label: kCMOIrDALinkDisconnectTimeout, // link disconn. threshld

type: 'option,
opCode: opGetCurrent,
data: {

arglist: [
0, // negotiated disconnect timeout

],
typelist: [

C H A P T E R 9

IrDA Communication Tool

9-8 Using the IrDA Tool

Preliminary Draft.  Apple Computer, Inc. 4/21/97

'struct,
'uLong, // Time before disc, def: 40 secs

],
},

},
{ label: kCMOSlowIRConnect, // "SlowIR" connect info

type: 'option,
opCode: opGetCurrent,
data: {

arglist: [
0, // connectOptions results

],
typelist: [

'struct,
'uLong, // How did we connect?

],
},

},
];

You may also want to know the status of the connection regarding error and
retry rates. You can use the kCMOSlowIRStats option to return this
information. Note that the kCMOSlowIRStats option is not documented in this
chapter because it’s already covered in the “Built-in Communications Tools”
chapter of Newton Programmer’s Reference, under the infrared
communications tool.

Slow IR Connect Option 9
A note about the last option in the previous example. Typically, one
communications tool listens while the other connects. But, IrDA has the
capability to connect if both devices are connecting (called symmetric
connections here). Both connect and listen options must be specified for this
to work and they both need to have and look for the same class names. After
the connection is established, one of the two devices has (invisibly to the
communications tool client) taken the role of the listener. The return value
from the last option in the previous example lets you know if you are the
connecter or the listener.

If the flag irActiveConnection is set in the returned connect field, then the
communications tool has the role of active connecter. If this flag is not set,
then the communications tool has the role of passive listener.

C H A P T E R 9

IrDA Communication Tool

IrDA Tool Option Reference 9-9
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Note that the kCMOSlowIRConnect option is not documented in this chapter
because it’s already covered in the “Built-in Communications Tools” chapter
of Newton Programmer’s Reference, under the infrared communications tool.

Note

The pre-existing infrared communications tool required
passing the kCMOSlowIRConnect option with
irSymmetricConnect set in the connect field to request
“symmetric connecting.” But, the IrDA tool does not—the
concept is part of IrDA. More importantly, don't confuse the
pre-existing kCMOSlowIRConnect option and the new IrDA
kCMOIrDAConnectInformation option. They are two
completely different things. ◆

IrDA Tool Option Reference 9

This section describes the IrDA communication tool options in detail. Table
summarizes the options used with the IrDA tool.

Table 9-1 Summary of IrDA tool options

Label Value Description

kCMOIrDADiscoveryInformation "irdi" Discovers other IrDA devices within
beaming range.

kCMOIrDAConnectInformation "irci" Finds name of service to use, or registers
service provided by the unit.

kCMOIrDAReceiveBuffers "irrb" Sets size and number of receive buffers.

kCMOIrDALinkDisconnectTimeout "irld" Sets the timeout period.

kCMOIrDAConnectUserData "ircd" Advanced option to send or receive out of
band data.

kCMOIrDAConnectAttrName "irca" Advanced option to register under a
different attribute name.

C H A P T E R 9

IrDA Communication Tool

9-10 IrDA Tool Option Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Note that the last three options, kCMOSerialBitRate, kCMOSlowIRConnect, and
kCMOSlowIRStats, are listed here because they can be used with the IrDA tool,
but these options exist in the Newton 2.0 OS—they are not new in 2.1. They
are documented in the Newton Programmer’s Reference under the
asynchronous serial tool (kCMOSerialBitRate) and the infrared tool
(kCMOSlowIRConnect and kCMOSlowIRStats).

Discovery Option 9
In the discovery phase of a connection, the Newton unit probes and
accumulates a list of other IrDA devices within beaming range. Each device
is loosely identified by a service hints field (PDA/Computer/Printer/etc.)
and a device nickname. The kCMOIrDADiscoveryInformation option is used to
specify which device to use and also how the Newton unit should appear to
other devices that probe it.

You can also use this option after a connection has been made, to return
information about the connection (the service hints of the discovered device,
and its device address).

The following example shows the use of this option:

local option := {
label: kCMOIrDADiscoveryInformation, // "irdi"
type: 'option,
opCode: opSetRequired,
data: {

arglist: [
8, // 8 probe slots
kIrDASvcHintPDAPalmtop,// service hint
kIrDASvcHintPrinter, // service hint mask

kCMOSerialBitRate "sbps" Changes the bps rate.

kCMOSlowIRConnect "irco" Controls how the connection is made.

kCMOSlowIRStats "irst" Read-only option returns statistics about
the data received and sent.

Table 9-1 Summary of IrDA tool options

Label Value Description

C H A P T E R 9

IrDA Communication Tool

IrDA Tool Option Reference 9-11
Preliminary Draft.  Apple Computer, Inc. 4/21/97

0, // devAddr of peer device
1, // use standard media busy check

],
typelist: [

'struct,
'uLong, // fProbeSlots
'uLong, // fMyServiceHints
'uLong, // fPeerServiceHints
'uLong, // fPeerDevAddr
'uLong, // fMediaBusyCheck

],
},

};

The fields in the IrDA discovery option frame are described in Table 9-2.

Table 9-2 IrDA discovery option fields

Option field Description

fProbeSlots The number of “slots” used during
probing. The valid choices are listed in
Table 9-3. The default is kIrDA8ProbeSlot.
This value relates to an IrDA
collision-avoidance mechanism. It is
recommended that you use the default
setting unless you have a specific reason
for changing it.

fMyServiceHints The category of device that you wish to
identify yourself as. The service hints are
listed in Table 9-4. The default value is
kIrDASvcHintPDAPalmtop.

C H A P T E R 9

IrDA Communication Tool

9-12 IrDA Tool Option Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Note that the service hints can be bit-OR’d together.

You can specify whatever you wish for the fMyServiceHints field, but the
value kIrDASvcHintPDAPalmtop is always OR’d in by the IrDA tool.

fPeerServiceHints A mask used to identify the categories of
devices that you wish to connect to. You
can OR together any combination of the
values in Table 9-4 to construct this value.
The default value is 0xFFFFFFFF (accept any
device during discovery phase).

fPeerDevAddr Read-only. Returns the address of the
discovered device.

fMediaBusyCheck To enable a 600ms. delay before discovery
begins, specify true (default). To disable
the delay, specify nil. It is highly
recommended that you use the default
setting. If you are using a sender/receiver
model (like Newton beaming) then you
may want to set this field to nil. But
beware, for this invalidates IrDA
compliancy with other IrDA devices.

Table 9-3 IrDA discovery option probe slots constants

Constant Value

kIrDA1ProbeSlot 1

kIrDA6ProbeSlot 6

kIrDA8ProbeSlot 8

kIrDA12ProbeSlot 12

Table 9-2 IrDA discovery option fields

Option field Description

C H A P T E R 9

IrDA Communication Tool

IrDA Tool Option Reference 9-13
Preliminary Draft.  Apple Computer, Inc. 4/21/97

When used with the opcode opGetCurrent, the field fPeerServiceHints
returns the service hints reported by the discovered device.

Note

Fields used during an endpoint Connect operation include
fProbeSlots, fPeerServiceHints and fMediaBusyCheck. Fields
used during an endpoint Listen operation include
fMyServiceHints. ◆

Connection Information Option 9
The second stage of the connection process involves a name lookup of the
service to use, or registry of the service provided. The
kCMOIrDAConnectInformation option is used to specify this information.

The following example shows the use of this option:

local option := {

Table 9-4 IrDA discovery option service hint constants

Constant Value

kIrDASvcHintPnPCompatible 0x00000001

kIrDASvcHintPDAPalmtop 0x00000002

kIrDASvcHintComputer 0x00000004

kIrDASvcHintPrinter 0x00000008

kIrDASvcHintModem 0x00000010

kIrDASvcHintFAX 0x00000020

kIrDASvcHintLanAccess 0x00000040

kIrDASvcHintTelephony 0x00000100

kIrDASvcHintFileServer 0x00000200

C H A P T E R 9

IrDA Communication Tool

9-14 IrDA Tool Option Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

label: kCMOIrDAConnectInformation, // "irci"
type: 'option,
opCode: opSetRequired,
data: {

arglist: [
0, // LSAP id
0, // peer LSAP id
4, // strlen("Test")
5, // strlen("IrLPT")
"Test", // my name
"IrLPT", // peer name

],
typelist: [

'struct,
'uLong, // fMyLSAPId
'uLong, // fPeerLSAPId
'uLong, // fMyNameLength
'uLong, // fPeerNameLength
['array, 'char, 0], // fMyName
['array, 'char, 0], // fPeerName

],
},

};

C H A P T E R 9

IrDA Communication Tool

IrDA Tool Option Reference 9-15
Preliminary Draft.  Apple Computer, Inc. 4/21/97

The fields in the IrDA connection information option frame are described in
Table 9-5.

Note that the only reason to use a specific value for the fMyLSAPId field would
be to advertise your service by number instead of by name—and that is not
recommended per IrDA standards. The option is left available in case your
application needs to communicate with an older desktop IrDA application.

Likewise for the fPeerLSAPId field—per IrDA standards, services should be
identified and looked up by name, not number. But if you need to
communicate with an older desktop IrDA application that supports access
only by LSAP id (no name look up) then you will be able to by specifying the
id number directly.

Table 9-5 IrDA connection information option fields

Option field Description

fMyLSAPId Set to 0 and the IrDA comm tool chooses a
random LSAP id (between 1 and 31), or
you may set a specific value from 1 to 31.
The default is 0.

fPeerLSAPId Set to 0 to do the service lookup by name,
or specify any other value from 1 to 111. If
the value is non-zero, then the name
lookup phase is skipped and connection is
made using an LSAP id with that value.
The default is 0.

fMyNameLength The length, in characters, of the fMyName
string. The default is 1.

fPeerNameLength The length, in characters, of the fPeerName
string. The default is 1.

fMyName A string identifying the service provided
by the Newton unit. The default is “X”.

fPeerName A string identifying the service provided
by the peer device. The default is “X”.

C H A P T E R 9

IrDA Communication Tool

9-16 IrDA Tool Option Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Note

Fields used during an endpoint Connect operation include
fPeerLSAPId, fPeerNameLength and fClassNames. Fields used
during an endpoint Listen operation include fMyLSAPId,
fMyNameLength and fClassNames. ◆

Receive Buffers Option 9
The receive buffers option, kCMOIrDAReceiveBuffers, sets the number and size
of buffers used for receiving data.

The following example shows the use of this option:

local option := {
label: kCMOIrDAReceiveBuffers, // IrDA recv buffers info
type: 'option,
opCode: opSetRequired,
data: {

arglist: [
2048, // buffer is 2048 bytes
1, // allocate one buffer

],
typelist: [

'struct,
'uLong, // size of each receive buffer, default is 512
'uLong, // number of receive buffers used, default is 1

],
},

};

The first field specifies the size, in bytes, of the receive buffers used by the
IrDA tool. The default is 512 bytes. Valid values are 64, 128, 256, 512, 1024, or
2048.

The second field specifies the number of receive buffers used by the IrDA
tool (window size in IrDA terminology). The default is 1. Valid values range
from 1 to 7.

Note that you may request a large buffer (and/or a large number of buffers),
but the actual buffer size and number of buffers may be less if the negotiated
speed is less than the maximum that you request.

This option applies to both Connect and Listen operations.

C H A P T E R 9

IrDA Communication Tool

IrDA Tool Option Reference 9-17
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Link Disconnect Option 9
The link disconnect option, kCMOIrDALinkDisconnectTimeout, sets the time (in
seconds) before communication is terminated, if no activity is received from
the peer device.

The following example shows the use of this option:

local option := {
label: kCMOIrDALinkDisconnectTimeout, // link disconnect threshold
type: 'option,
opCode: opSetRequired,
data: {

arglist: [
8, // disconnect after 8 seconds

],
typelist: [

'struct,
uLong, // time before disconnect, default is 40 seconds

],
},

};

Proper communication protocol between IrDA devices is to send data or a
“ready-to-receive” packet every 500ms (minimum). If no such activity is
detected for the number of seconds specified by this option, then the IrDA
tool is disconnected. The default value is 40 seconds. Valid values are 3, 8, 12,
16, 20, 25, 30, and 40.

This option applies to both Connect and Listen operations.

Note that after 3 seconds of non-activity, a disconnect warning event is sent
from the IrDA tool via the endpoint EventHandler method. The values used

C H A P T E R 9

IrDA Communication Tool

9-18 IrDA Tool Option Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

for the eventCode and data slots of the event frame passed to EventHandler
are shown in Table 9-6.

Connect User Data Option 9
This rarely used option that may be needed for comm tools that wish to
build upon the base IrDA comm tool. This is the kCMOIrDAConnectUserData
option, which is used during connect time to send/receive “out of band”
data. See the IrDA documentation to get an idea of how this would be used
(specifically IrTinyTP and IrComm).

local option := {
label: kCMOIrDAConnectUserData, // IrDA connect user data
type: 'option,
opCode: opSetRequired,
data: {

arglist: [
3, // length of data; strlen("foo")
"foo", // data string

],
typelist: [

'struct,
'uLong, // fDataLength; default is 0
['array, 'char, 0], // fData

],
},

};

Table 9-6 Disconnect warning event values

Constant Value

Event codes

kEventToolSpecific 1

kEventDisconnect 2

kEventRelease 3

IrDA tool event data

kDisconnectWarningEvent 1

C H A P T E R 9

IrDA Communication Tool

IrDA Tool Option Reference 9-19
Preliminary Draft.  Apple Computer, Inc. 4/21/97

The fields fDataLength and fData are used together to describe data to be
sent/received during connect/listen.

Attribute Name Option 9
The option kCMOIrDAConnectAttrName is intended for communications tools
(built upon the IrDA tool) that are implementing higher layers of the IrDA
stack (IrComm, for example) and want to register their LSAP ids with a
different attribute name. This option defines the IAS attribute string for the
LSAP selector that is registered or looked up by the communications tool.
The default value for the IrDA tool (which is implemented at the IrLMP
level) is “IrDA:IrLMP:LsapSel”. For example, a communications tool that
implements TinyTP would supply a value of “IrDA:TinyTP:LsapSel”, per the
TinyTP spec.

local option := {
label: kCMOIrDAConnectAttrName, // IrDA attribute name
type: 'option,
opCode: opSetRequired,
data: {

arglist: [
19, // length of data; strlen("IrDA:TinyTP:LsapSel")
"IrDA:TinyTP:LsapSel", // data string

],
typelist: [

'struct,
'uLong, // fNameLength; default is 0
['array, 'char, 0], // fName

],
},

};

The fields fNameLength and fName are used together to describe the LSAP id
attribute name registered for Listen/Connect or looked up for Connect
operations.

C H A P T E R 9

IrDA Communication Tool

9-20 IrDA Tool Option Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

IrDA Tool Error Codes 9
Table 9-7 lists error codes returned by the IrDA communications tool.

Table 9-7 IrDA tool error codes

Error code Description

-38502 Wrong class specified in the kCMOIrDAConnectInformation
option.

-38504 Disconnected on/by the remote side.

-38505 Lost connection with the remote side.

C H A P T E R 9

IrDA Communication Tool

IrDA Tool Option Reference 9-21
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Summary of IrDA Tool 9

IrDA Tool Service Option Label 9

kCMSIrDA "irda"

IrDA Tool Options 9
kCMOIrDADiscoveryInformation "irdi"
kCMOIrDAConnectInformation "irci"
kCMOIrDAReceiveBuffers "irrb"
kCMOIrDALinkDisconnectTimeout "irld"
kCMOIrDAConnectUserData "ircd"
kCMOIrDAConnectAttrName "irca"
kCMOSerialBitRate "sbps"
kCMOSlowIRConnect "irco"
kCMOSlowIRStats "irst"

Constants 9

IrDA Discovery Information Option Constants 9
kIrDA1ProbeSlot 1
kIrDA6ProbeSlot 6
kIrDA8ProbeSlot 8
kIrDA12ProbeSlot 12

kIrDASvcHintPnPCompatible 0x00000001
kIrDASvcHintPDAPalmtop 0x00000002
kIrDASvcHintComputer 0x00000004
kIrDASvcHintPrinter 0x00000008
kIrDASvcHintModem 0x00000010
kIrDASvcHintFAX 0x00000020
kIrDASvcHintLanAccess 0x00000040
kIrDASvcHintTelephony 0x00000100
kIrDASvcHintFileServer 0x00000200

C H A P T E R 9

IrDA Communication Tool

9-22 IrDA Tool Option Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

IrDA Link Disconnect Warning Event Constants 9
kEventToolSpecific 1
kEventDisconnect 2
kEventRelease 3

kDisconnectWarningEvent 1

10-1
Preliminary Draft.  Apple Computer, Inc. 4/21/97

C H A P T E R 1 0

eMate Multi-User Mode 10

In some classrooms, eMate units are shared among several students who
keep their work on the eMate for several days or longer. A particular eMate
unit may be used by several different people in one day. This requires the
ability to protect each student’s data from other students. The teacher can do
this by setting up the unit to operate in Classroom mode with multiple users.

The password-protected Teacher Setup application allows the teacher to
choose the unit’s operating mode (Classroom mode or Full Newton System
mode); to select which built-in applications will be available to users in
Classroom mode; and to set up user accounts on the unit. When the unit is in
Classroom mode and it wakes up, the user is required to log in before they
can begin using the unit. Depending on how the teacher has configured the
unit, the user may be required to enter a password in addition to their user
name.

Note that there is a distinction between Classroom mode and multi-user
mode. The unit must be in Classroom mode in order to be in multi-user
mode, but it can be in Classroom mode without being in multi-user mode.
Classroom mode limits the applications available in the Extras Drawer, while
multi-user mode allows multiple users of the unit to keep their data separate.

Applications designed to be used with eMate, including Newton Works,
create a separate soup for each user, as well as a generic soup that is used
when the unit is in Full Newton System mode. Applications not modified to

Figure 10-0
Listing 10-0
Table 10-0

C H A P T E R 1 0

eMate Multi-User Mode

10-2 Using Multi-user Mode

Preliminary Draft.  Apple Computer, Inc. 4/21/97

work with eMate in multi-user mode will work just as they do on other
Newton units—all users can see all data.

After logging in, the user can begin work on the eMate. For all applications
that have been written to work in multi-user mode, the user sees only the
data that has been created by himself or herself. For other applications
(including all of the built-in applications besides Newton Works) the user
sees all of the data.

Other users’ data is hidden in separate soups for each user. The name of the
user associated with a soup is saved in the soup information frame in the
userName slot. Each multi-user-aware application displays data only from the
soup corresponding to the current user. Each application must register to be
notified of changes to the current user variable (KCurrentUser) in the system
user configuration data so that it can change users after the eMate wakes up.

In a multi-user aware application, if the user switches to Full Newton System
mode from Classroom mode, the generic (accessible to all users) soup should
be shown.

Using Multi-user Mode 10

Applications must do a few things to support Classroom multi-user mode.

■ When the application opens, check the current user and open the soup
corresponding to that user. Note that you can name the
application-created soups anything you want, but it is recommended that
you use names created by the GenSoupName method.

■ The application should not show the filing folder tab when it opens and
the unit is in Classroom mode. This user interface guideline is used to
simplify the interface by removing the filing folder feature and prevents a
user from deleting or changing the names of folders that might have been
used by others.

■ The application must provide a GetBackupSoupNames method that returns
an array of the names of the soups for the current user, so the Classroom
Dock application can back up the data. If this method is not supplied,
Classroom Dock cannot back up user’s data.

C H A P T E R 1 0

eMate Multi-User Mode

Reference 10-3
Preliminary Draft.  Apple Computer, Inc. 4/21/97

■ The application must be aware that the current user can change while the
application is open. To handle this, the application can register (use
RegUserConfigChange) to be notified of changes to the user configuration
variable KCurrentUser. Here's an example of a method that responds to a
user change:

func(changeSym) begin
if changeSym = 'KCurrentUser then

GetRoot().HomePage:MultiUserSwitch('newtWorks);
end

The MultiUserSwitch method closes and reopens the application when the
user changes. This allows the application to begin displaying data for a
different user.

■ An application that works in Classroom mode can set a KClassroomAware
slot in its base view to true, causing the application to be listed as one of
the recommended applications for Classroom mode availability in the Edit
Extras slip (which is accessed via the Teacher Setup application). Do not
set the KClassroomAware slot unless you implement the other requirements
in this section.

Reference 10

User Configuration Variables 10
This section describes those user configuration variables associated with
Classroom and multi-user mode. Note that you should always use the
function GetUserConfig to access these variables. You can use the function
RegUserConfigChange to register to be notified of changes to the user
configuration data. These functions are documented in Newton Programmer’s
Reference.

Variable descriptions

KSimpleMode True if unit is in Classroom mode, nil otherwise
KCurrentUser String naming current user, or nil for none

C H A P T E R 1 0

eMate Multi-User Mode

10-4 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Functions and Methods 10
The functions and methods in this section are used by applications to
implement behavior that supports multi-user mode.

GetBackupSoupNames 10

app:GetBackupSoupNames()

Returns an array of strings corresponding to the names of this application's
soups for the current user.

return value An array of one or more soup name strings
corresponding to the current user.

DISCUSSION

You must supply this method in your application if you want to support
multi-user mode.

This method is called by the Classroom Dock application when the user
wants to back up his or her data to the classroom server.

If the unit is in Full Newton System mode, this method should return the
name of the generic (accessible to all users) application soup.

The following line of code shows one way to construct an appropriate return
value for the GetBackupSoupNames method.

[
GetRoot().HomePage:GenSoupName(allSoups.myApp.soupBaseName,

if GetUserConfig('KSimpleMode)
then GetUserConfig('KCurrentUser))

];

This example uses the GenSoupName method of the HomePage application to
construct an appropriate soup name string. This method returns a string by
concatenating a base soup name with the current user name, or with nil if
the unit is not in Classroom mode. Note that the application identified as
HomePage in the root frame contains the Teacher Setup slip, controls display of
the simplified Extras Drawer when the unit is in Classroom mode, and
performs other functions related to Classroom mode.

C H A P T E R 1 0

eMate Multi-User Mode

Reference 10-5
Preliminary Draft.  Apple Computer, Inc. 4/21/97

MultiUserSwitch 10

HomePage:MultiUserSwitch(appSymbol)

Closes and opens an application when the current user changes.

appSymbol The application symbol of the application you want to
close and reopen.

return value Undefined; do not rely on it.

DISCUSSION

You can call this method to close and reopen your application when the unit
is in multi-user mode and the current user changes. You need to call this
method only if your application is currently displaying data for a user when
the user is changed. For example, if it is displaying a clock or some other
data that is not associated with a particular user, then you don’t need to call
this method.

Call this method like this:

GetRoot().HomePage:MultiUserSwitch(myAppSymbol);

GenSoupName 10

HomePage:GenSoupName(soupName, currentUser)

Returns a string that can be used as the soup name for a given user.

soupName A string identifying a soup. This string must not contain
more than 20 characters.

currentUser A string identifying the current user. This string must
not contain more than 19 characters.

return value A string formed by concatenating soupName with
currentUser, with a semicolon between them. If
currentUser is nil (indicating that the unit is not in
multi-user mode), soupName is returned without being
modified.

C H A P T E R 1 0

eMate Multi-User Mode

10-6 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

The result of this method can be used as the soup name for a soup holding
data for a particular user, when the unit is in multi-user mode.

If the soupName string contains a colon followed by a signature, GenSoupName
moves the colon and signature to the end of the string it returns, so it follows
the currentUser portion of the returned string. Here is an example of this
situation:

soupName := "WidgetPlanner:mySig"; currentUser := "Anna";
GetRoot().HomePage:GenSoupName(soupName,currentUser);

// return value
"WidgetPlanner;Anna:mySig"

If the soupName string does not contain a colon, then the two strings are
simply concatenated, separated by a semicolon, as shown in this example:

soupName := "WidgetPlanner"; currentUser := "Anna";
GetRoot().HomePage:GenSoupName(soupName,currentUser);

// return value
"WidgetPlanner;Anna"

If the soupName string is more than 20 characters long (signature included)
and the currentUser string is exactly 19 characters, then GenSoupName returns a
string longer than 39 characters. If you pass this string to a function that
creates a soup, the system truncates the soup name to 39 characters, which
truncates the developer signature. It is imperative that the soupName string
be 20 characters or fewer. GenSoupName does not check for length.

Note that the system automatically limits the length of user names to a
maximum of 19 characters.

C H A P T E R 1 0

eMate Multi-User Mode

Reference 10-7
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Summary of Multi-User Mode 10

User Configuration Variables 10
kSimpleMode // true if unit is in classroom mode, nil otherwise
kCurrentUser // string naming current user

Functions and Methods 10
app:GetBackupSoupNames()
HomePage:MultiUserSwitch(appSymbol)
HomePage:GenSoupName(soupName, currentUser)

C H A P T E R 1 0

eMate Multi-User Mode

10-8 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Reference 11-1
Preliminary Draft.  Apple Computer, Inc. 4/21/97

C H A P T E R 1 1

Miscellaneous 11

This chapter lists miscellaneous changes to the Newton 2.1 OS that are not
lengthy enough to warrant their own chapters . It is organized first by type
of information (data structures, protos, constants, and functions and
methods), and then by Newton Programmer’s Guidechapter.

Reference 11

Data Structures 11

Views 11

A new view slot hilitedData, and the format of clipboard data frames are
described in this section.

View Slot 11

The following view slot is new to Newton 2.1 OS:

Figure 11-0
Listing 11-0
Table 11-0

C H A P T E R 1 1

Miscellaneous

11-2 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Slot description

hilitedData This slot states whether this view currently has data that
can be cut or copied with the global command keys. If a
view has this slot with a value of true, it will be sent a
ViewAddDragInfoScript message, when the global
command keys are used. If the command was a cut (as
opposed to a copy) the view will also be sent a
ViewDropRemoveScript message.

Clipboard Data Frame 11

A clipboard data frame is the frame returned by GetClipboard, and passed to
SetClipboard. It has the following slots:

Slot descriptions

label A string; the text displayed by the clipboard item.
types Array of types arrays, one types array per item in the

clipboard item. The number and order of these types
arrays must match that of the data arrays in the data
slot. Each types array contains symbols representing the
types of data in the corresponding data array. Each

C H A P T E R 1 1

Miscellaneous

Reference 11-3
Preliminary Draft.  Apple Computer, Inc. 4/21/97

symbol specifies the type of data in the corresponding
element within the data array.
For example, the following 1-element types array
describes a clipboard with one item, that can be seen as
either a picture or a text:
'[[text,picture]]

Note that the nested array is ordered with preferred
type first. If the destination view accepts both text and
pictures, the text is passed to the destination view.
This next 2-element types array on the other hand,
describes a clipboard with two items, a string and a
picture:
'[[text],[picture]]

The system can display types of 'text, 'polygon, 'ink,
and 'picture. The type of data the system requires for
these types is listed in Table 11-1.

data Array of data arrays, one data array per item on the
clipboard. The number and order of data arrays, must
match the number and order of types arrays in the types
slot. Each data array should contain the data
corresponding to that type in the array in the types slot.
For example the data in clipboardFrame.data[i][j]
should be of the type specified by
clipboardFrame.types[i][j] .
Each element within the nested arrays can be any
NewtonScript object. If you specified a 'text, 'polygon,
'ink, and 'picture data types; these array elements
should be frames with the slots listed in Table 11-1.

bounds A bounds frame; where the data came from in global
coordinates.

C H A P T E R 1 1

Miscellaneous

11-4 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Table 11-1 Clipboard data types accepted by the system

Built-In Applications 11

A folder symbol has been added for the button bar, the cityAlias slot of
Names worksite soup entries has changed, and a number of user
configuration variables have been added. The soup format of Works word
processor entries is described.

Extras Drawer Folder Symbols 11

The following symbols are used for the labels slot of part entries by the
Extras Drawer:
nil Unfiled.
'_extensions Extensions.
'_help Help.
'_setup Set up.
'_soups Storage.
'_ButtonBar The button bar.

Names Worksite Soup Entry 11

Worksite entries in the Names soup contain a cityAlias slot. Previous
version of the Newton OS stored a entry alias to an undocumented soup in
this slot. In Newton 2.1 OS this slot contains an array with information about
the city, or nil if there is no city information. Note that ResolveEntryAlias
returns nil if passed in an array (or anything other than a valid entry alias).

types Required Slots Optional slots
'text text any other clParagraphView slots
'polygon points

viewBounds
any other clPolygonView slots

'ink ink
viewBounds

any other clPolygonView slots

'picture icon
viewBounds

any other clPictureView slots

C H A P T E R 1 1

Miscellaneous

Reference 11-5
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Newton Works Word Processor Soup Format 11

Newton Works word processor soup entries have the following slots.

Slot descriptions

class The symbol 'paper.
version Integer, the current version of the entry.
title String which is the document title.
timeStamp Creation date of the entry.
realModTime Date the entry was most recently modified.
saveData Frame returned from protoTXView Externalize call

(page 3-36).
hiliteRange Frame with the document's highlight range (see “The

Range Frame” (page 3-22)).
margins Frame with slots top, left, bottom, right, which are the

document's margins in pixels.

User Configuration Variables 11

The following user configuration variables are new to Newton 2.1 OS:

Slot descriptions

LCDContrast On units that support software control of the LCD
contrast setting, this slot contains the current contrast
setting. It can also be used to modify the current
contrast. Use the kGestaltArg_HasSoftContrast Gestalt
selector to check ia a Newton device has software LCD
control, and the maximum and minimum values.

alarmVolumeDb Sets the system wide alarm volume in decibels. Use the
kGestaltArg_VolumeInfo Gestalt selector to find the
range of allowable values for the volume.

soundVolumeDb Sets the system wide volume in decibels. Use the
kGestaltArg_VolumeInfo Gestalt selector to find the
range of allowable values for the volume.

buttonBarPositions A 4-element array, specifying the position of the button
bar in each of the four possible screen orientations. Each

C H A P T E R 1 1

Miscellaneous

11-6 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

element in the array can be either nil, specifying that
the default setting should be used, or one of the
following symbols: 'top, 'left, 'right, or 'bottom.
The array elements are ordered using the screen
orientation constants as indices to this array, see “Screen
Orientation Constants” (page 11-12). That is,
buttonBarPositions[kPortait] should hold information
for the portrait screen orientation.

buttonBarControlsPositions
A 4-element array, specifying the position of the
controls—overview button and scroll arrows—in each
of the four screen orientations. Each array element can
be nil, specifying that the default value be used, or the
symbols 'top and 'bottom for when the button bar is on
the left or right sides of the screen, or 'left and 'right
for when the button bar is on the top or bottom of the
screen.
The array elements are ordered using the screen
orientation constants as indices to this array, see “Screen
Orientation Constants” (page 11-12). That is,
buttonBarControlsPositions[kPortait] should hold
information for the portrait screen orientation.

bellyButtonPositions
A 4-element array, specifying the position of the
overview button relative to the scroll arrows in each of
the four screen orientations. Each array element can be
nil, specifying that the default value be used, or the
symbols 'outside, 'inside, 'left, and 'right.
The array elements are ordered using the screen
orientation constants as indices to this array, see “Screen
Orientation Constants” (page 11-12). That is,
bellyButtonPositions[kPortait] should hold
information for the portrait screen orientation.

buttonBarIconSpacingH
An integer specifying the number of pixels spacing
icons in the button bar when the button bar is laid out
horizontally — across the top or bottom of the screen.

C H A P T E R 1 1

Miscellaneous

Reference 11-7
Preliminary Draft.  Apple Computer, Inc. 4/21/97

The default is 40 on the MessagePad 2000. To restore
this settings to its default value, set it to nil.

buttonBarIconSpacingV
An integer specifying the number of pixels spacing
icons in the button bar when the button bar is laid out
vertically — across the left or right sides of the screen.
The default is 40 on the MessagePad 2000. To restore
this settings to its default value, set it to nil.

extrasIconSpacingH
An integer specifying the horizontal spacing of icons in
the Extras Drawer in pixels. The default is 64 in the
MessagePad 2000. This value has no effect when the
Extras Drawer is in overview mode.To restore this
settings to its default value, set it to nil. This value is
not used in systems prior to Newton 2.1 OS.

extrasIconSpacingV
An integer specifying the vertical spacing of icons in the
Extras Drawer in pixels. The default is 52 in the
MessagePad 2000. This value has no effect when the
Extras Drawer is in overview mode.To restore this
settings to its default value, set it to nil.This value is not
used in systems prior to Newton 2.1 OS.

extraFont The font used for the icon labels in both the Extras
Drawer and the button bar. While you can use both an
integer font spec or a font spec frame, it is strongly
recommended that you use only integer font specs, such
as userFont9 + tsPlain or simpleFont9 + tsBold. Using
the integer representation in this instance accomplishes
two things: it reduces NewtonScript Heap usage and it
restricts you to the set of built-in fonts. Using a font
that's not in ROM is extremely dangerous, because the
font could be removed. This information is stored in a
soup. A user may be forced to do a hard reset in order to
remove a bad font specification.
This value is not used in systems prior to Newton 2.1
OS.

C H A P T E R 1 1

Miscellaneous

11-8 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Protos 11
This section describes protoPasswordSlip and protoBlindEntryLine.

protoPasswordSlip 11

This proto allows the user to create a new password or enter an existing
password without echoing the password in plain text. The typed keys appear
as bullets in the input line. A view created from protoPasswordSlip is shown
in Figure 11-1. Note that the slip does not include an embedded keyboard
when created on a Newton device with a hardware keyboard attached.

Figure 11-1 A view created from protoPasswordSlip

C H A P T E R 1 1

Miscellaneous

Reference 11-9
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Note

This proto exists in Newton 2.0 OS, but was not
previously documented. ◆

This proto has one slot of interest:

Slot description

verifyPassword The symbol 'verifyOnly, true, or nil. This slot
determines if the password slip is used to just ask for a
password, or if it is used to change a password.
A value of 'verifyOnly specifies a password slip that
queries a user for a password, but does not allow the
user to change the password. In this case, the slip
includes only a “Password” entry line.
A value of true means the user is queried for the old
password, and may also change the password. This is
the default. In this cases the slip has all three entry lines:
“Password,” “New Password,” and “Confirm
Password.”
A value of nil means the can change the password
without entering the old one. In this case the slip
includes only the “New Password” and “Confirm
Password” entry lines.

This proto has the following methods of interest:

CurrentPassword 11

passwordSlip:CurrentPassword()

Called to retrieve the current password.

return value A string for the current password, or nil if there is no
current password.

C H A P T E R 1 1

Miscellaneous

11-10 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

SetPassword 11

passwordSlip:SetPassword(newPassword)

Called to set a new password.

newPassword A string, the new password to store.

return value You can return anything; it is ignored.

DISCUSSION

Note that the password is a string in plain text, so for maximum security it
should be encoded before being stored.

MatchPassword 11

passwordSlip:MatchPassword(newPassword, currentPassword)

Called to verify that the correct password has been entered

newPassword A string for the password entered by user

currentPassword A string for the current password as returned by
CurrentPassword.

return value Return true if the two match, nil if not.

MatchedPassword 11

passwordSlip:MatchedPassword()

Called if a valid password was entered.

return value You can return anything; it is ignored.

DISCUSSION

You must call the inherited method to correctly close the password slip.

protoBlindEntryLine 11

This proto allows text to be entered, without echoing the text back to the
user. This proto is used in the protoPasswordSlip. It is shown in Figure 11-2

C H A P T E R 1 1

Miscellaneous

Reference 11-11
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Figure 11-2 A view based on protoBlindEntryLine

This proto has three slots of interest:

Slot descriptions

dummyChar Optional. A character containing the text to display
instead of the real text. By default, the bullet character is
used.

realText The string the user has typed. You should use this slot
for looking up the value of the text (instead of looking
in the text slot).
Do not modify this slot directly. Use the UpdateText
method.

label Optional. The string used as the label of the entry lines.

UpdateText 11

blindEntryLine:UpdateText(newText)

Sets the value of the realText slot to the value in newText, and correctly
updates the string displayed to the user.

newText A string, the new value for the blind entry line.

return value Undefined; do not rely on it.

Constants 11

Views 11

The following constants represent the four possible screen orientations.

C H A P T E R 1 1

Miscellaneous

11-12 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Screen Orientation Constants 11

The four screen orientation constants are shown in Figure 11-3 (page 11-12).

Figure 11-3 Screen orientation constants

Built-In Communication Tools 11

A new serial communication tool option is described.

Serial Communication Tool Sound Option 11

There is a new serial communication tool option for enabling sound
pass-through using a PCMCIA card. Here is an example of what the option
looks like:

local option := {
type: 'option,
label: kCMOPCMCIAModemSound, //"msnd"
opCode: opSetRequired,
form: 'template,
result: nil,
data: {

arglist: [nil],

C H A P T E R 1 1

Miscellaneous

Reference 11-13
Preliminary Draft.  Apple Computer, Inc. 4/21/97

typelist: ['struct, 'boolean],
},

}

The arglist value is either true or nil. If true, sound pass-through is
enabled. If nil, sound pass-through is disabled.

You would normally use this option with a PCMCIA modem using the serial
tool. The modem tool automatically enables sound pass-through, so you
should not need to use this option with the modem tool.

This option should be used only after the serial endpoint has connected.

Note

Sound pass-through should be disabled before the endpoint
is disconnected. If it is not, power consumption increases
and the speaker emits an annoying sound.

Sound pass-through only works for PCMCIA cards which
support it through the PCMCIA specification.

This option is only for use in Newton OS 2.1 and higher. ◆

Functions and Methods 11
The following methods and functions are either new to Newton 2.1 OS, have
changed since previous OS releases, or have existed but were not previously
documented. Unless otherwise noted in the COMPATIBILTY section of a
function’s description, all functions described here are new to Newton 2.1 OS.

C H A P T E R 1 1

Miscellaneous

11-14 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Views 11

DragAndDrop 11

view:DragAndDrop(unit, dragBounds, pinBounds, copy, dragInfo)

Starts the drag and drop process, returning when the dragged item(s) is
dropped into a view or into the clipboard; it is usually called from a
ViewClickScript.

unit The stroke unit received by the ViewClickScript method.

dragBounds The bounds of the item to be dragged, in global
coordinates. The image enclosed by the bounds is used
by the clipboard.

pinBounds A bounds frame or nil. The bounds to use when
constraining the object within the app area. If you pass
nil, the drag object’s bounds, dragBounds, are used. If
the object being dragged is almost the size of the app
area, you may want to specify a smaller bounds frame
than dragBounds, otherwise the object may not appear to
move far enough. If you specify a bounds frame larger
that dragBounds, the object cannot be dragged near the
edge of the app area.

copy Nil or non-nil, indicating whether to drag a copy or the
original items. Specify non-nil to drag a copy, nil to
move the original items.

dragInfo An array of frames (one frame per dragged item). Each
frame has the following slots:

types An array of symbols of the types to which
an item can be converted.

dragRef Any valid NewtonScript object. This
value is passed to your other methods,
such as your ViewGetDropDataScript.

label An optional string used when the drop is
to the clipboard; it is used as the clipboard
label. If this slot is missing and the item

C H A P T E R 1 1

Miscellaneous

Reference 11-15
Preliminary Draft.  Apple Computer, Inc. 4/21/97

has a 'text type, the text data is used as
the label; otherwise a default label is used.

minDragDistance
An integer, the minimum distance in
pixels that the user must drag the object
before it moves. The default is 4.

return value This method returns one of the following integers:
kDragNot = 0 The item was not dragged at all.
kDragged = 1 The item was dragged, but was rejected

by the destination.
kDragNDropped = 2

The item was dropped into another view.

DISCUSSION

The DragAndDrop method sends several messages to both the source view (the
view from which DragAndDrop was sent) and the destination view (the view
that will receive the items). If you want other views to be able to accept data,
these views must implement all of the destination methods. If you have more
than one view that can receive a drop, it is easier if you make one
drop-aware proto and use it for your other views.

SEE ALSO

For further information see “Dragging and Dropping with Views”
(page 3-40) in Newton Programmer’s Guide.

COMPATIBILTY

The dragInfo argument’s minDragDistance slot is ignored in Newton operating
systems prior to Newton 2.1.

DragAndDropLtd 11

view:DragAndDropLtd(unit, dragBounds, limitBounds, copy, dragInfo)
//platform file function

C H A P T E R 1 1

Miscellaneous

11-16 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Starts the drag and drop process, returning when the dragged item(s) is
dropped into a view or into the clipboard; it is usually called from a
ViewClickScript.

unit The stroke unit received by the ViewClickScript method.

dragBounds The bounds of the item to be dragged, in global
coordinates. The image enclosed by the bounds is used
by the clipboard.

limitBounds A bounds frame, or a frame with two optional slots:
limitBounds and pinBounds. If you specify a bounds
frame, it is the bounds in global coordinates in which
the object can be dragged.

Otherwise, you may pass in a frame with the following
slots:
limitBounds A bounds frame, the symbol 'none, or nil.

The bounds frame is a rectangle in global
coordinates in which the object can be
dragged. The symbol 'none specifies that
there is no limiting rectangle, and the
object can be dragged anywhere on the
screen. If you pass nil (or do not include a
limitBounds slot) the app area is used as
the limiting rectangle.

pinBounds A bounds frame, the symbol 'none, or nil.
The bounds to use when constraining the
object within the limiting rectangle
defined in the limitBounds slot. If you
pass nil, the drag object’s bounds,
dragBounds, are used. If you pass 'none, an
empty rectangle (with 0 width and height)
is specified at the point where the pen
went down to drag the object; that is, the
object moves until the tip of the pen
reaches the limit bounds.
If the object being dragged is small,
compared to the size of the limitBounds,
you may want to specify a pinBounds

C H A P T E R 1 1

Miscellaneous

Reference 11-17
Preliminary Draft.  Apple Computer, Inc. 4/21/97

smaller than dragBounds, otherwise the
object may not appear to move far
enough. If you specify a bounds frame
larger that dragBounds, the object cannot
be dragged near the edge of the
limitBounds.

copy Nil or non-nil, indicating whether to drag a copy or the
original items. Specify non-nil to drag a copy, or nil to
move the original items.

dragInfo An array of frames (one frame per dragged item). Each
frame has the following slots:

types An array of symbols of the types to which
an item can be converted.

dragRef Any valid NewtonScript object. This
value is passed to your other methods,
such as your ViewGetDropDataScript.

label An optional string used when the drop is
to the clipboard; it is used as the clipboard
label. If this slot is missing and the item
has a 'text type, the text data is used as
the label; otherwise a default label is used.

minDragDistance
An integer, the minimum distance in
pixels that the user must drag the object
before it moves. The default is 4.

return value This method returns one of the following integers:
kDragNot = 0 The item was not dragged at all.
kDragged = 1 The item was dragged, but was rejected

by the destination.
kDragNDropped = 2

The item was dropped into another view.

C H A P T E R 1 1

Miscellaneous

11-18 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. This implementation, as
a global function, and not as a view method, requires an
additional argument view, the view calling this function.

Call it using this syntax:

call kDragAndDropLtdFunc with (view, unit, dragBounds,
limitBounds, copy, dragInfo));
 ◆

DISCUSSION

The DragAndDropLtd method sends several messages to both the source
view (the view from which DragAndDropLtd was sent) and the destination
view (the view that will receive the items). If you want other views to be able
to accept data, these views must implement all of the destination methods. If
you have more than one view that can receive a drop, it is easier if you make
one drop-aware proto and use it for your other views.

ViewAddDragInfoScript 11

view:ViewAddDragInfoScript(dragInfo)

Called to retrieve data if the user hits the global command keys, and your
view has a hilitedData slot set to true.

C H A P T E R 1 1

Miscellaneous

Reference 11-19
Preliminary Draft.  Apple Computer, Inc. 4/21/97

dragInfo An array of frames. You should add a frame to this
array if you have something to cut or copy. Your frame
should have the following slots:

types An array of symbols of the types to which
an item can be converted.

view A view object type if the dragged item is a
view with a symbol type of 'paragraph,
'polygon, 'picture, and so on.

dragRef Any value that will be passed to other
methods.

label An optional string used when the drop is
to the clipboard; it is used as the clipboard
label. If this slot is missing and the item
has a 'text type, the text data is used as
the label; otherwise a default label is used.

minDragDistance
An integer, the minimum distance in
pixels that the user must drag the object
before it moves. The default is 4.

return value Return true if you have added an element to dragInfo;
that is, something was cut or copied. Return nil
otherwise.

GetClipboard 11

GetClipboard()

Returns the contents of the clipboard.

return value A clipboard data frame, or nil if the clipboard is empty.
Clipboard data frames are described in “Clipboard Data
Frame” (page 11-2).

C H A P T E R 1 1

Miscellaneous

11-20 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

SetClipboard 11

SetClipboard(clipboardData)

Sets the contents of the clipboard.

clipboardData A clipboard data frame, as described in “Clipboard Data
Frame” (page 11-2), or nil to clear the clipboard. In
addition to the slots in a normal clipboard data frame,
you may include an xy slot in clipboardData:
xy A frame with two slots x and y. Each slot

contains an integer specifying the offset
from the origin, in global coordinates, of
the label’s position on the screen. By
default, the clipboard label is placed on
the left side of the screen, a little below
the top.

return value Undefined; do not rely on it.

DISCUSSION

You can use this function to perform a paste, use GetClipboard to get the
contents, then call SetClipboard with nil to clear the clipboard.

C H A P T E R 1 1

Miscellaneous

Reference 11-21
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Stationery 11

RegStationeryChange 11

RegStationeryChange(regSymbol, functionBody)

Registers a function object to be executed when stationery is installed or
removed.

regSymbol A unique symbol that includes your developer
signature.

functionBody Function object called when stationery changes. This
function body takes four arguments:
message A symbol, currently the symbols 'install

and 'remove are used.
defType A symbol, currently the symbols 'dataDef

and 'viewDef are sent, for the type of
stationery that has been installed or
removed.

symbol1 The dataDef symbol of the installed or
removed stationery.

symbol2 If defType is 'dataDef, then this is
undefined. If defType is 'viewDef, then this
is the viewDef symbol of the installed or
removed stationery.

return value Undefined; do not rely on it.

SPECIAL CONSIDERATIONS

The function passed in the functionBody argument must not itself call
RegStationeryChange or UnregStationeryChange.

C H A P T E R 1 1

Miscellaneous

11-22 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

UnRegStationeryChange 11

UnRegStationeryChange(regSymbol)

Unregisters a function body previously registered using RegStationeryChange.

regSymbol The symbol used in the call to RegStationeryChange.

return value Undefined; do not rely on it.

Text Input and Display 11

GetAllFonts 11

GetAllFonts()

Returns the installed user fonts.

return value An array of font frames.

DISCUSSION

The system font, Espy, is not included in the returned list.

MakeFontMenu 11

MakeFontMenu(font, families, sizes, styles)

Creates an array of font menu items.

font Nil or a font specification as either a frame or a packed
integer that represents the default font. The returned
font menu checks the items that correspond to the
selected font family, size and style. Passing nil results in
no items being checked.

families Nil, the symbols 'all or 'none, or an array of font
families. This parameter controls which fonts are
returned. If this parameter is nil the all user fonts in the
system ar returned (recommended). If you pass the
symbol 'all every font is returned, including system
font. If you pass the symbol 'none family choices are not

C H A P T E R 1 1

Miscellaneous

Reference 11-23
Preliminary Draft.  Apple Computer, Inc. 4/21/97

included in the returned menu. An array specifies the
list of font families to return for the menu.

sizes Nil, the symbol 'none, or an array of numbers. This
parameter controls which font sizes are returned. If you
pass nil, the font size specified in the font parameter is
used. If you pass the symbol 'none font size choices are
not included in the menu. An array specifies the list of
sizes to return for the menu.

styles Nil, the symbol 'none, or an integer. This parameter
controls which style choices are returned. If you pass
nil, the default styles in the system are returned. If you
pass the symbol 'none style choices are not included in
the menu. An integer specifies a list of style choices to
return for the menu as a packed integer; the constants
specified in “Font Face Constants” (page 7-3) in Newton
Programmer’s Reference.To specify more than one font
face constant, simply add them together, and pass in the
sum.

return value An array of font menu items, suitable for use wherever
a pop up menu array is needed, such as in
protoPopupButton, protoPopInPlace, and the PopupMenu
view method.

DISCUSSION

Presently, the styles argument ignores the constants kFaceSuperscript and
kFaceSubscript.

C H A P T E R 1 1

Miscellaneous

11-24 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Recognition 11

RecognizeTextInStyles 11

RecognizeTextInStyles(textFrame, defaultFontSpec)

Translates the ink words in a frame containing a combination of raw ink and
text.

textFrame A frame with a text and a styles slot.

defaultFontSpec A font spec, either an integer or a frame. This the font to
use for translated ink. For more information on font
specs, see Chapter 8, “Text and Ink Input and Display,”
in Newton Programmer’s Guide.

return value If textFrame contains no ink, textFrame is returned.
Otherwise a new frame is returned. This frame has a
text and a styles slot, containing translated versions of
all the ink words.

DISCUSSION

The highest confidence match for each ink word is returned.

RecognizeInkWord 11

RecognizeInkWord(inkWord)

Returns an array of translation options for an ink word.

inkWord Ink word data from a rich string or from a style array.

return value An array of frames for each possible match, or nil if no
matches were found. The frames in the array contain a
word slot which contains a string.

DISCUSSION

The array returned is sorted such that higher confidence matches are earlier
in the array; that is the first element is the highest confidence match.

C H A P T E R 1 1

Miscellaneous

Reference 11-25
Preliminary Draft.  Apple Computer, Inc. 4/21/97

System Services 11

BatteryStatus 11

BatteryStatus(which)

Returns a status frame for the specified battery.

which An integer identifying the battery for which to return
status information. The value 0 specifies the primary
battery pack.

return value A status frame; see DISCUSSION.

DISCUSSION

The status frame returned contains the following slots:
batteryType Contains one of the following symbols, or an integer:

'alkaline Battery is standard alkaline.
'nicd Battery is nickel-cadmium.
'nimh Battery is nickel-metal hydride.
'lithium Battery is lithium.

batteryVoltage A real number giving the current battery voltage.
batteryCapacity An integer, indicating the percentage of a full charge

that the battery contains.
batteryLow An integer, indicating the percentage of a full charge at

which the “low battery” warning should be triggered by
the system.

batteryDead An integer, indicating the percentage of a full charge at
which the “dead battery” warning should be triggered
and the unit shut down by the system.

batteryCurrent A real number indicating the current drain, in
milliamps. This slot is nil if the battery is charging. This
slot is new in 2.1.

acPower Contains a symbol ('yes or 'no) indicating whether or
not the unit has AC power applied. Note that this does

C H A P T E R 1 1

Miscellaneous

11-26 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

not imply that the battery is charging. See chargeState
to determine that.

acVoltage A real number giving the AC voltage being supplied by
an AC adapter, or nil if AC power is not supplied.

chargeState Contains one of the following symbols, or an integer:
'notCharging

The battery is not charging.
'discharging

The battery is discharging.
'preliminaryCharging

The battery is charging under a pulsed
duty schedule that raises its voltage to a
level at which it can be efficiently
fast-charged. This charging mode is used
initially for charging a heavily discharged
battery.

'fastCharging
The battery is fast-charging.

'trickleChargeContinuous or 'trickleCharging
The battery is fully charged and is being
maintained in that state by
trickle-charging.

chargeRate Reserved for future use.
chargeCurrent A real number indicating the current, in milliamps,

being supplied to charge the battery, if it is charging. If
the battery is discharging, this is the current supplied
from the battery to the system.

ambientTemp A real number indicating the ambient temperature in
degrees Celsius.

batteryTemp A real number indicating the battery temperature in
degrees Celsius.

C H A P T E R 1 1

Miscellaneous

Reference 11-27
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Note

A nil value for a slot means the underlying hardware
cannot supply this information. The slots containing symbol
values (batteryType, chargeState, acPower) may contain
integers if the battery driver returned something other than
the values listed here. ◆

COMPATIBILITY

The return value of this function is changed from its Newton 2.0 OS
implementation. The batteryCurrent slot is new and the possible symbol
values for the chargeState slot are different.

Built-In Applications 11

GetPartEntryData 11

extrasDrawer:GetPartEntryData(entry) //platform file function

Returns a frame containing information about an Extras Drawer part entry.

entry An entry obtained from a part cursor; by using
GetPartCursor.

return value The frame returned has the following slots:
icon A bitmap object, containing the bitmap

for the part icon displayed in the Extras
Drawer on Newton 1.x and 2.0 operating
systems.

iconPro A frame containing two pix families, for
the highlighted icon and the normal icon
to display in the Extras Drawer on
Newton 2.1 OS. For more information on
grey icons and pix families, see Chapter 6,
“Drawing and Graphics 2.1.”

text A string that is the text shown under the
part icon.

labels A symbol identifying the Extras Drawer
folder in which the part is filed. For a list

C H A P T E R 1 1

Miscellaneous

11-28 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

of these see “Extras Drawer Folder
Symbols” (page 11-4).

appSymbol A symbol identifying the application, if
the part frame has an app slot.

packageName A string that is the name of the package
that contains the part.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kGetPartEntryDataFunc with (entry);
 ◆

SetEntryAlarm 11

calendar:SetEntryAlarm(mtgText,mtgStartDate,minutesOrDaysBefore)

Sets an alarm for the meeting or event with the given text at the given date
and time. If the meeting or event is an instance of a repeating meeting or
event, the alarm is set for all instances of the repeating meeting or event.

mtgText A string or rich string that is the meeting text of the
meeting or event for which you want to set the alarm
time.

mtgStartDate An integer specifying the start date and time of the
meeting or event, in the number of minutes passed since
midnight, January 1, 1904.

minutesBefore A non-negative integer, which specifies how far in
advance of the meeting or event the alarm should go
off. A value of 0 means the alarm goes off at the time of
the meeting. This integer should specify the number of
minutes before mtgStartDate that you want the alarm to
go off for a meeting, and the number of days before
mtgStartDate for an event.

You can specify nil to clear an alarm that is currently
set.

return value Undefined; do not rely on it.

C H A P T E R 1 1

Miscellaneous

Reference 11-29
Preliminary Draft.  Apple Computer, Inc. 4/21/97

COMPATIBILITY

The version of this function available on Newton 2.0 OS can only be used for
meetings. The kSetEventAlarmFunc function exists in the 2.0 platform file to
set alarms for events.

SetUserConfigEnMasse 11

SetUserConfigEnMasse(changeSym, changeFrame)

Sets one or more user configuration variables.

changeSym A symbol passed to functions registered for notification
of user configuration changes. This symbol should be
one of the slot names in changeFrame. Some functions
registered for user configuration variable changes are
passed only this symbol, see RegUserConfigChange.

changeFrame A frame where the names of the slots are the names of
the user configuration variables that you wish to set,
and the slot values are the values to which the
respective user configuration variables should be set.

return value Undefined; do not rely on it.

RegUserConfigChange 11

RegUserConfigChange(callBackID, callBackFn)

Registers a function object to be called each time a user configuration
variable changes.

callBackID A unique symbol identifying the function object to be
registered; normally, the value of this parameter is the
application symbol, which includes your registered
signature, or some variation on it.

callBackFn A function object called when a user configuration
variable changes. It is passed either one or two

C H A P T E R 1 1

Miscellaneous

11-30 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

parameters. This function can be either of either of the
following two forms:
func(changeSym, changeFrame) begin end
func(changeSym) begin end

On Newton devices where the SetUserConfigEnMasse
function is not defined, this callback function is always
passed one argument. On Newton devices with
SetUserConfigEnMasse defined, this function will be
called with the proper number of arguments; that is, if
you define a one argument function, it will be called
with only the changeSym argument, but if you define it
with two arguments, it is called with both the
changeSym and the changeFrame arguments.

For information on the changeSym and the changeFrame
parameters, see SetUserConfing (in Newton Programmer’s
Reference) and SetUserConfingEnMasse.

The return value of callBackFn function is ignored.

return value Undefined; do not rely on it.

DISCUSSION

Note that it is up to the application that changed one of these variables to
broadcast the change. This is not something that you need to worry about,
since the SetUserConfig function will always broadcast the change. Also note
that the system may change, and broadcast the change of, certain
undocumented user configuration variables; you should ignore these
symbols.

SPECIAL CONSIDERATIONS

The function callBackFn must not call the RegUserConfigChange or
UnRegUserConfigChange functions.

C H A P T E R 1 1

Miscellaneous

Reference 11-31
Preliminary Draft.  Apple Computer, Inc. 4/21/97

KillStdButtonBar 11

KillStdButtonBar(buttonBarParams)

Closes (or restores) the standard button bar, and reserves screen area for a
new one.

buttonBarParams A 4-element array or nil. Pass the value nil to restore
the standard button bar. If you pass an array, each
element should be a frame specifying where to save
screen space for the replacement button bar in the four
different screen orientations. The array elements should
be ordered as specified by “Screen Orientation
Constants” (page 11-12); that is,
buttonBarParams[kPortait] should hold information for
the portrait screen orientation.

These frames should have the following slots:
buttonBarPosition

One of the following symbols: 'top,
'bottom, 'right, 'left, or 'none. These
symbols specify where to reserve space
for the replacement button bar. Specify
'none if you do not wish to reserve this
space.

buttonBarThickness
An integer specifying how much space to
save for the button bar in pixels. You may
not omit this slot, unless
buttonBarPosition is set to 'none.

return value Undefined; do not rely on it.

DISCUSSION

If the app area becomes less than 320 pixels high as a result of a call to
KillStdButtonBar, views without a ReorientToScreen method cannot open.

C H A P T E R 1 1

Miscellaneous

11-32 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

GetPartEntries 11

buttonBar:GetPartEntries()

Returns the part entries of all icons in the button bar.

return value A frame with the following two slots, fixed and mobile.
Both of these slots contain an array of part entries. The
part entries in fixed cannot be moved by dragging.
Similarly, the part entries in mobile can be moved. The
ordering of these arrays is important; it determines the
order of the icons in the button bar.

DISCUSSION

You must not modify the part entries in any way. To obtain information from
a part entry, use the Extras Drawer GetPartEntryData method.

To send this method use code such as the following:

local bb := GetRoot().Buttons;
if (bb.soft) then bb:GetPartEntries()

Reconfigure 11

buttonBar:Reconfigure(newSetup)

Reconfigures the button bar.

newSetup A frame with fixed and mobile slots. Each slot should
contain an array of part entries or application symbols.
The icons in fixed are not draggable, while the ones in
mobile are. The ordering of these arrays is important; it
determines the order of the icons in the button bar.

return value Undefined; do not rely on it.

DISCUSSION

To send this method use code such as the following:

local bb := GetRoot().Buttons;
if (bb.soft) then bb:Reconfigure()

C H A P T E R 1 1

Miscellaneous

Reference 11-33
Preliminary Draft.  Apple Computer, Inc. 4/21/97

IconCapacity 11

buttonBar:IconCapacity()

Returns the number of icons the button bar can currently hold.

return value An integer, the maximum number of icons.

DISCUSSION

To send this method use code such as the following:

local bb := GetRoot().Buttons;
if (bb.soft) then bb:IconCapacity()

Transports 11

DeleteItem 11

transport:DeleteItem(item)

Deletes an item from the In/Out Box.

item The item to delete. This is an item frame from the In Box.

return value Undefined; do not rely on it.

DeleteRemoteItems 11

transport:DeleteRemoteItems()

Causes the transport to delete from the In/Out Box all remote items that
have not been fully downloaded.

return value Undefined; do not rely on it.

DISCUSSION

Typically, you use the DeleteRemoteItems method after the transport
disconnects, to remove from the In/Out Box all remote items that the user
chose not to retrieve fully. This method removes all items whose remote slot
is set to true.

C H A P T E R 1 1

Miscellaneous

11-34 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

COMPATIBILITY

This 2.1 method replaces the 2.0 method ownerApp:RemoveTempItems. If you
are writing an application for 2.1 only, then you should use this method
instead of ownerApp:RemoveTempItems.

RefreshOwner 11

transport:RefreshOwner()

Causes the transport owner (typically the In/Out Box) to refresh the view of
the in box.

return value Undefined; do not rely on it.

DISCUSSION

You use RefreshOwner to refresh the in box view after remote items are fully
retrieved and after remote items that are not fully retrieved are deleted.

COMPATIBILITY

This 2.1 transport method replaces the 2.0 method ownerApp:Refresh. If you
are writing an application for 2.1 only, then you should use this method
instead of ownerApp:Refresh.

Utility Functions 11

ROM_GetSerialNumber 11

ROM_GetSerialNumber()

Returns the unique hardware serial number of a Newton device.

return value An 8 byte binary object containing the Newton device’s
serial number.

DISCUSSION

This function is not defined in neither Newton 1.x nor 2.0 OS. You should
wrap the call to this function in try...onException block, as in the following
example:

C H A P T E R 1 1

Miscellaneous

Reference 11-35
Preliminary Draft.  Apple Computer, Inc. 4/21/97

local sn;

try
sn := call ROM_GetSerialNumber with ()

onException |evt.ex| do
 nil;

if sn then
// ...

The serial number returned in ROM is not the same as the serial number
stamped on the Newton device. The ROM serial number is intended for use
by programmers.

The StrHexDump and ExtractByte functions are designed to read binary
objects.

ImportDisabled 11

partFrame:ImportDisabled(unitName, majorVersion, minorVersion)

Called after an imported unit has been deactivated to perform housekeeping.

unitName A symbol, the name of the unit.

majorVersion An integer, the major version number of the unit.

minorVersion An integer, the minor version number of the unit.

return value Either the symbol 'ThrillMeChillMeFulfillMe or
anything else.

DISCUSSION

The part should deal with the situation as gracefully as possible. For
example, you could use alternative data, or put up a message slip with the
Notify method and/or close your application.

If you return the symbol 'ThrillMeChillMeFulfillMe, the system attempts to
re-resolve the imports. For example, if version 2 of unit foo is disabled and
your package’s ImportDisabled script returns 'ThrillMeChillMeFulfillMe, the
system looks for other versions of the objects in the unit foo.

C H A P T E R 1 1

Miscellaneous

11-36 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

COMPATIBILITY

Newton 2.0 OS sends this message, but ignores the return value.

LegalOrientations 11

LegalOrientations()

Returns the legal values for screen orientations on the Newton device.

return value An array of integers, possible values are listed in
“Screen Orientation Constants” (page 11-12).

COMPATIBILITY

This function is supported in Newton OS 2.0. On the MessagePad 120 and
130 units, the only possible return values are kPortrait (0) and
kLandscapeFlip (3).

GetOrientation 11

GetOrientation()

Returns the current orientation of the unit.

return value An integer, possible values are listed in “Screen
Orientation Constants” (page 11-12).

COMPATIBILITY

This function is supported in Newton OS 2.0. On the MessagePad 120 and
130 units, the only possible return values are 0 and 3.

SetScreenOrientation 11

SetScreenOrientation(orientation)

Sets the screen orientation.

orientation An integer specifying the new orientation, possible
values are listed in “Screen Orientation Constants”
(page 11-12).

return value Nil if the screen orientation was not changed, otherwise
a non-nil value is returned.

C H A P T E R 1 1

Miscellaneous

Reference 11-37
Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

This function requests the system to rotate the screen to the desired
orientation. The user may be prompted if particular applications do not
support the new orientation.

GetAppParams 11

GetAppParams()

Returns a frame containing information about the screen size and other
system configuration items.

return value A frame with the following slots:
appAreaTop The y coordinate of the top-left corner of

the application area. Children of the root
view are always opened relative to the
application area. This value is always 0.

appAreaLeft The x coordinate of the top-left corner of
the application area. This value is
always 0.

appAreaWidth
The width of the screen in pixels.

appAreaHeight
The height of the screen in pixels.

buttonBarPosition
A symbol, either 'top, 'left, 'bottom,
'right, or 'none indicating where the
button bar is, if there is one. This is useful

C H A P T E R 1 1

Miscellaneous

11-38 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

if you want to locate your application
flush against the button bar.

appAreaGlobalTop
The y coordinate of the top of the
application area in global coordinates.

appAreaGlobalLeft
The x coordinate of the left of the
application area in global coordinates.

buttonBarBounds
If there is a soft button bar this slot
contains its view bounds.

COMPATIBILITY

Versions of this function previous to Newton 2.1 OS return a frame without
the appAreaGlobalTop, appAreaGlobalLeft, and buttonBarBounds slots.

Gestalt 11

Gestalt(selector)

Returns information about the Newton system; the type of information
returned depends on the value of the selector parameter.

selector A constant that specifies the type of information that is
returned on the system. The following values are
currently allowed: kGestalt_SystemInfo,
kGestalt_Backlight, kGestaltArg_HasSoftContrast, and
kGestaltArg_VolumeInfo.

return value Depends on selector, see DISCUSSION.

DISCUSSION

The return value of this function depends on the value of selector, as follows:

■ If selector is kGestalt_SystemInfo, Gestalt returns a frame with the
following slots:

C H A P T E R 1 1

Miscellaneous

Reference 11-39
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Slot Descriptions

manufacturer An integer indicating the manufacturer of the Newton
Device.

machineType An integer indicating the hardware type this ROM was
built for.

ROMStage A decimal integer indicating the language (English,
German, French) and the stage of the ROM (alpha, beta,
final).

ROMVersion A packed integer indicating the major and minor ROM
version numbers. You can use the following function to
convert this number into an array, containing an integer
for the ROM major and minor version numbers:

func (ROMVersionInteger)
begin
 local minor := BAND(ROMVersionInteger, 0xFFFF);
 local major := BAND(ROMVersionInteger>>16, 0xFFFF);
 [Floor(StringToNumber(BAND(major>>12, 0xF)
 & BAND(major>>8, 0xF)
 & BAND(major>>4, 0xF)
 & BAND(major, 0xF))),
 Floor(StringToNumber(BAND(minor>>12, 0xF)
 & BAND(minor>>8, 0xF)
 & BAND(minor>>4, 0xF)
 & BAND(minor, 0xF)))]
end

Here is another example of code to test if your Newton
is running 2.x. The following expression evaluates to a
non-nil value if the major version is 2:

BAND((Gestalt(kGestalt_SystemInfo).ROMVersion)>>16, 0xFFFF) = 0x0002

IMPORTANT

Do not assume that if the Newton is running version 2.0 or
later that a particular feature exists. You still need to test the
Newton to make sure the feature exists. ◆

C H A P T E R 1 1

Miscellaneous

11-40 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Note

The machineType, ROMStage and ROMVersion slots provide
internal configuration information and should not be relied
on. ◆

screenWidth An integer representing the width of the screen in
pixels. The width takes into account the current screen
orientation.
For example, on the MessagePad 120, because the screen
width is 240 and the screen height is 320, in portrait
orientation Gestalt returns a width of 240. If the
screen is rotated, Gestalt returns a width of 320.

screenHeight
An integer representing the height of the screen in
pixels.

screenResolutionX
An integer representing the number of horizontal pixels
per inch. For screens with square pixels,
screenResolutionX equals screenResolutionY. On the
MessagePad 120, for example, both screenResolutionX
and screenResolutionY equal 85.

screenResolutionY
An integer representing the number of vertical pixels
per inch.

screenDepth
The bit depth of the LCD screen. For the MessagePad
120, the LCD supports a monochrome screen depth of 1.

C H A P T E R 1 1

Miscellaneous

Reference 11-41
Preliminary Draft.  Apple Computer, Inc. 4/21/97

The eMate 300 and MessagePad 200 have 4 bit depth
LCD screens.

patchVersion
Returns 0 on an unpatched Newton and nonzero on a
patched Newton.

ROMVersionString
The user-visible string that identifies the version of the
installed ROM and the installed patch, if any.
The first part of the string is a “functionality level”
indicating the OS version, such as 1.3, 2.0 or 2.1.
The second part of the string is a six-digit number in
parentheses that is an encoded representation of ROM
and system update information.

cpuType A symbol specifying the type of CPU, possible values
are 'strongArm, 'arm710a, and 'arm610a.

cpuSpeed A real indicating the speed of the CPU in megahertz.

■ If selector is kGestalt_Backlight, Gestalt returns either nil, indicating the
unit does not have backlight hardware, or a one element array. If an array
is returned the unique element contains either nil or a non-nil value,
indicating whether backlight hardware is present.
The following code correctly tests if a unit has a backlight:

local result := Gestalt(kGestalt_Backlight);
if result and result[0] then

 // unit has backlighting
else

 // unit does not have backlighting

■ If selector is kGestaltArg_HasSoftContrast, Gestalt returns either nil, or a 3
element array of the following form:
[hasSoftContrast, minContrast, maxContrast]

C H A P T E R 1 1

Miscellaneous

11-42 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Array Element Descriptions

hasSoftContrast True or nil depending on whether there is a soft
contrast control.

minContrast Integer for the minimum contrast.

maxContrast Integer for the maximum contrast.
You can use the values returned by this selector to set the LCDContrast user
configuration variable.

■ If selector is kGestaltArg_VolumeInfo, Gestalt returns either nil, or a 7
element array of the following form:
[hasInput, hasOutput, hardwareVolControl, headphoneJack, minAudibleDB,
numDVLevels, devicesBitfield]

Array Element Descriptions

hasInput True or nil depending on whether the device can
support sound input.

hasOutput True or nil depending on whether the device can
support sound output.

hardwareVolControl True or nil depending on whether the device has a
hardware volume control.

headphoneJack True or nil depending on whether the device has a
built-in headphone jack.

minAudibleDB An integer, the minimal decibel level for output. The
MessagePad 2000 is set to -31.9760.

numDVLevels An integer, the number of levels between minAudibleDB
and 0. The dB increment per level is minAudibleDB/
numDVLevels. The MessagePad 2000 is set to 14.

devicesBitfield A packed integer with information about the built-in
sound devices. This integer contains the summation of
the applicable device constants. Device constants are
described in “Device Constants” (page 7-26) in

C H A P T E R 1 1

Miscellaneous

Reference 11-43
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Chapter 7, “Sound.” The two important ones are
kInternalSpeaker and kInternalMic.
The following function returns nil / non-nil if the
current device has an internal microphone (use
kInternalSpeaker to check for an internal speaker):

HasMic := func()
begin

local volInfo := Gestalt(kGestaltArg_VolumeInfo) ;

return volInfo AND
(BAND(volInfo[6], kInternalMic) <> 0);

end

COMPATIBILITY

The kGestalt_Backlight and kGestaltArg_VolumeInfo selectors are not
supported on 2.0 devices.

TimeFrameStr 11

TimeFrameStr(timeFrame, timeStrSpec)

Returns a string representation of the time timeFrame, in the specified format.

timeFrame A date frame as returned by the Date function.

timeStrSpec A format specification returned by the
GetDateStringSpec function, or one of the format
specifications found in ROM_dateTimeStrSpecs.

return value A string representation timeFrame.

DISCUSSION

This function is similar to the TimeStr function. The TimeStr function is
passed in the time as an integer, the number of minutes since 1/1/04; this is
what the Time function returns. Thus, when the a format spec is provided
that requires seconds, TimeStr returns a string with 00 as the seconds value.
TimeFrameStr, on the other hand, since it is passed the time as a date frame,
can include seconds information.

C H A P T E R 1 1

Miscellaneous

11-44 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

LocalTime 11

LocalTime(time, where)

Returns the local time in a distant city.

time An integer, the time in minutes since 1/1/1904 in the
local, Newton device’s, time zone. This is the value
returned by the Time function.

where A city entry, as returned by GetCityEntry.

return value An integer, the time in minutes since 1/1/1904 in the
where city, adjusted as necessary for time zone and
daylight savings.

DISCUSSION

To find out the time in Tokyo:

Date(LocalTime(Time(), GetCityEntry("Tokyo")[0]))

This function call returns the following frame

{year: 1997, month: 2, Date: 22, dayOfWeek: 6, hour: 8, minute: 1,
second: 0, daysInMonth: 28}

COMPATIBILITY

This function exists in Newton 2.0 OS, but was not previously documented.

DSTOffset 11

DSTOffset(time, where)

Returns the Daylight Savings Time component of a given city at a given date.

time An integer, the time in minutes since 1/1/1904 in the
where city.

where A city entry, as returned by GetCityEntry.

return value An integer, the number of minutes that daylight savings
adjusted that time in that city.

C H A P T E R 1 1

Miscellaneous

Reference 11-45
Preliminary Draft.  Apple Computer, Inc. 4/21/97

COMPATIBILITY

This function exists in Newton 2.0 OS, but was not previously documented.

SymbolName 11

SymbolName(symbol)

Returns a string representation of a symbol.

symbol A symbol.

return value A string.

COMPATIBILITY

This function exist in Newton 2.0 OS, but was not previously documented.

C H A P T E R 1 1

Miscellaneous

11-46 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Summary 11

Data Structures 11

Views 11

View Slot 11

hilitedData

Clipboard Data Frame 11

aClipboardDataFrame := {
label : string, //string displayed by clipboard
types : array, //array of types arrays
data : array, //array of data arrays
bounds : frame, //where data came from
...}

Built-In Applications 11

Extras Drawer Folder Symbols 11

nil
'_extensions
'_help
'_setup
'_soups
'_ButtonBar

Names Worksite Soup Entry 11

cityAlias

C H A P T E R 1 1

Miscellaneous

Reference 11-47
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Newton Works Word Processor Soup Format 11

aWorksWordProcessorSoupEntry :=
{
class: 'paper,
version: integer,
title: string ,
timeStamp: integer,
realModTime: integer,
saveData: frame,
hiliteRange: frame,
margins: frame,
...}

User Configuration Variables 11

LCDContrast
alarmVolumeDb
soundVolumeDb
buttonBarPositions
buttonBarControlsPositions
bellyButtonPositions
buttonBarIconSpacingH
buttonBarIconSpacingV
extrasIconSpacingH
extrasIconSpacingV
extraFont

Protos 11

protoPasswordSlip 11

aPassWordSlip := {
_proto : protoPasswordSlip,
CurrentPassword : func() ..., //gets curr password
SetPassword : func(newPassword), //sets curr password
MatchPassword: func(newPassword, currentPassword)..., //do these match
MatchedPassword: func() ... , //called if there was a match
verifyPassword: symbolORtrueORnil, //should password be verified
...}

C H A P T E R 1 1

Miscellaneous

11-48 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

protoBlindEntryLine 11

aBlindEntryLine := {
_proto: protoBlindEntryLine,
dummyChar : character, //char to echo
UpdateText : func (newText), //updates text
realText : string, //the real text
label : string, //entry line label
...}

Constants 11

Views 11

Screen Orientation Constants 11

kPortrait 0
kLandscape 1
kPortraitFlip 2
kLandscapeFlip 3

Built-In Communcations Tools 11

Serial Communication Tool Sound Option 11

kCMOPCMCIAModemSound "msnd"

Functions and Methods 11

Views 11
view:DragAndDrop(unit, bounds, limitBounds, copy, dragInfo)

//starts the drag and drop process (2.0 also)
view:DragAndDropLtd(unit, dragBounds, limitBounds, copy, dragInfo)

//starts the drag and drop process in limited area(platform file)

C H A P T E R 1 1

Miscellaneous

Reference 11-49
Preliminary Draft.  Apple Computer, Inc. 4/21/97

view:ViewAddDragInfoScript(dragInfo) //called if hilitedData is true
GetClipboard() //returns the contents of the clipboard
SetClipboard(clipboardData) //sets the contents of the clipboard

Stationery 11
RegStationeryChange(regSymbol, functionBody)

//regs callback for stationey change
UnRegStationeryChange(regSymbol) //unregs a stationery change callback

Text Input and Display 11
GetAllFonts() // returns the installed user fonts
MakeFontMenu(font, families, sizes, styles) //makes a font menu

Recognition 11
RecognizeTextInStyles(textFrame, defaultFontSpec)

//recognizes ink in a frame
RecognizeInkWord(inkWord) //recognizes an ink word

System Services 11
BatteryStatus(which) //returns info about a battery (2.0 also)

Built-In Applications 11
extrasDrawer:GetPartEntryData(entry)

// gets info about an part entry (platform file - 2.0 also)
calendar:SetEntryAlarm(mtgText,mtgStartDate,minutesOrDaysBefore)

// sets an alarm for a meeting or event (2.0 also)
SetUserConfigEnMasse(changeSym, changeFrame)

// sets multiple user configuaration variables
RegUserConfigChange(callBackID, callBackFn)

//registers a callback for changes in a user configuration vars.
KillStdButtonBar(buttonBarParams)

// closes (or restores) the button bar
buttonBar:GetPartEntries() //returns part entries for parts in b. bar
buttonBar:ReConfigure(newSetup) //reconfigure the button bar
buttonBar:IconCapacity() // gets number of icons that fit in bb

C H A P T E R 1 1

Miscellaneous

11-50 Reference

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Transports 11
transport:DeleteItem(item) //deletes item from In/Out box
transport:DeleteRemoteItems() //deletes remote items
transport:RefreshOwner() //refreshes the transport owner

Utility Functions 11
ROM_GetSerialNumber() //gets a units unique serial number
partFrame:ImportDisabled(unitName, majorVersion, minorVersion)

//called to clean up when unit is disabled (2.0 also)
LegalOrientations() //gts legal values for sceen orientation (2.0 also)
GetOrientation() //gets current sceen orientation (2.0 also)
SetScreenOrientation(orientation) //sets sceen orientation
GetAppParams() //gets system configuration (2.0 also)
Gestalt(selector) //gets info about the system (2.0 also)
TimeFrameStr(timeFrame, timeStrSpec) //returns string with time
LocalTime(time, where) //gets local time in a distant city (2.0 also)
DSTOffset(time, where) //gets DST component of a city’s time(2.0 also)
SymbolName(symbol) //returns a string version of a symbol (2.0 also)

Editors A-1
Preliminary Draft.  Apple Computer, Inc. 4/21/97

A P P E N D I X

Newton Toolkit Enhancements A

Newton Toolkit version 1.6.4 provides support for pix families and gray
icons. Two editors have been significantly changed for this purpose, the
picture editor and the application icon editor. These new build-time
functions have also been added to NTK: GetSoundFrame, MakeBinaryFromHex,
MakeDitheredPattern, MakeExtrasIcons, MakePixFamily, and UnpackRGB.

Editors 11

The picture and application icon editors have been changed to support pix
families.

Picture Slot Editor 11
A picture slot editor, shown in Figure A-1, is used to create a pix family from
a number of PICT resources at different bit depths to use for the icon slot of a
clPictureView. The editor allows you to include different PICTs to display on
black and white, 4 grays, 16 grays, and 256 grays screens. You may specify
any number of these pictures; the system software determines the
appropriate image to display at run time.

Note

The picture does not have to be the same bit-depth as the
picture window it is placed in. For example, an 8-bit picture
could be specified for the “Black and White” window. The
picture would be properly displayed on a black and white
screen. However, this would waste memory, and the picture
would be drawn slower. You should reduce the bit depth of
each PICT to the appropriate setting in NTK with a graphics
utility on the desktop machine. ◆

Figure A-0
Listing A-0
Table A-0

A P P E N D I X

A-2 Editors

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Figure A-1 NTK’s picture slot editor

NTK displays the width and height in pixels. All included PICTs must be the
same size. Each of the images is selected from a popup menu over the image.
This popup menu contains all the PICT resources from resource files
included in the current project.

A P P E N D I X

Editors A-3
Preliminary Draft.  Apple Computer, Inc. 4/21/97

A number of options are provided for a picture’s mask:

No Mask The bitmap does not contain a mask.

Use Picture The mask is a PICT resource that is picked from the
popup menu over the Mask window, just like any other
image is selected.

Use XORing A mask is generated such that when this mask is Xor’ed
with the 1 bit image, the image selected in the mask
field is displayed.

Calculate Mask A mask is generated automatically from the black and
white image. If no black and white image has been
selected, one is created by NTK on the fly from one of
the available images to generate the mask.

Application Icon Editor 11
The Application Icon pane of the Project Settings dialog allows you to select
gray icons for your form part. There is a field for each of four screen
resolutions, 1, 2, 4, and 8 bits, as well as a field for highlighted versions of the
icon, and two fields for the normal and highlighted masks.

A P P E N D I X

A-4 Editors

Preliminary Draft.  Apple Computer, Inc. 4/21/97

Figure A-2 NTK’s Application Icon pane of the Project Setting dialog

A PICT is selected for each of these icons with the popup menu to the right
of each of these fields. There are four choices available for the icon’s mask:

No Mask A mask is not used.

Use Picture A black and white PICT is selected.

Use XORing A mask is generated such that when this mask is Xor’ed
with the 1 bit icon, the image selected in the mask field
is displayed. The Extras Drawer in Newton 1.x and 2.0
OS Xor’s an icon with its mask when the icon is selected.

Calculate Mask A mask is generated automatically from the black and
white image. If no black and white image has been
selected, one is created by NTK on the fly from one of
the available images, to generate the mask.

A P P E N D I X

Functions A-5
Preliminary Draft.  Apple Computer, Inc. 4/21/97

Functions 11

The following build-time functions are new in NTK version 1.6.4. Note that
these functions are not available at run time.

GetSoundFrame 11

GetSoundFrame(nameString)

Retrieves a sound from an open Macintosh sound resource.

nameString A string specifying the name of the sound resource to be
retrieved.

return value A sound frame containing a sound in whatever format
is specified in the source sound resource. For details on
the sound frame, see “Sound Frame” (page 7-28).

DISCUSSION

This function is similar to the older GetSound and GetSound11 build-time
functions. However, those functions require the sound to conform to a
particular sampling rate, while GetSoundFrame is capable of loading sounds of
any type. The Newton device, of course, will only play certain kinds of
sounds.

MakeBinaryFromHex 11

MakeBinaryFromHex(hexString, classSym)

Returns a binary object of the specified class from the data in hexString.

hexString A string consisting of an even number of hexdigits.
Each set of two hexdigits makes for one byte of the
binary object. This string is similar to the string returned
by StrHexDump.

classSym A symbol for the binary object’s class.

return value A binary object of class classSym.

A P P E N D I X

A-6 Functions

Preliminary Draft.  Apple Computer, Inc. 4/21/97

SEE ALSO

For example calls to this function, see “Black and White Patterns”
(page 6-11), “Gray Patterns” (page 6-12), and “Dithered Patterns” (page 6-12).

MakeDitheredPattern 11

MakeDitheredPattern(bwPattern, foregroundColor, backgroundColor)

Creates a dithered pattern.

bwPattern A one-bit pattern. A pattern is a binary object containing
an 8x8 bitmap of class 'pattern. The constants vfWhite,
vfLtGray, vfGray, vfDkGray, and vfBlack specify patterns
in the Newton OS ROM.

foregroundColor A kRGB_GrayXX constant or a packed RGB integer
returned by PackRGB.

backgroundColor A kRGB_GrayXX constant or a packed RGB integer
returned by PackRGB.

return value A dithered pattern frame as defined in “Dithered
Pattern” (page 6-28).

DISCUSSION

Using this function, as opposed to creating your own frame ensures that the
frame shares a frame map with other dithered pattern frames.

SEE ALSO

For an example use of this function, see “Dithered Patterns” (page 6-12).

A P P E N D I X

Functions A-7
Preliminary Draft.  Apple Computer, Inc. 4/21/97

MakeExtrasIcons 11

MakeExtrasIcons(iconRsrcSpecs,unhilitedMaskRsrcSpec,hilitedMaskRsrcSpec)

Creates a frame with an iconPro, and optionally, an icon slot; these slots can
be copied to a part frame.

iconRsrcSpecs An array of frames with the following format:
unhilitedRsrcSpec

String for the name of a PICT resource to
use as the normal icon.

 hilitedRsrcSpec
Optional. String for the name of a PICT
resource for highlighted icon.

 bitDepth Optional. Integer indicating resource’s bit
depth. The allowable values are 1, 2, 4,
and 8.
If you do not specify a bit depth for a
particular PICT, the bit depth is
determined automatically from the PICT
resource. If you want the icon to be
included in your project at a particular bit
depth, you should specify it explicitly.

Note

All the PICTs provided in this array must be of the same
size. ◆

unhilitedMaskRsrcSpec
String for the name of a black and white PICT to be the
mask for normal icon.

hilitedMaskRsrcSpec String for the name of the black and white PICT to be a
mask for the highlighted icon, or nil if no highlighted
icon is provided.

return value A frame with an iconPro slot, and if 1-bit information is
provided in iconRsrcSpecs, an icon slot. These slots can
be copied to a part frame.

A P P E N D I X

A-8 Functions

Preliminary Draft.  Apple Computer, Inc. 4/21/97

DISCUSSION

If the iconRsrcSpecs array contains more than one icon, the system determines
the appropriate one for the current hardware.

The resource names are for named PICT resources within any resource file
included in the current project. If more than one PICT is used, then all the
PICTs must have the same size bounds, or this function will throw. This
includes all the PICTs referred to in the iconRsrcSpecs, unhilitedMaskRsrcSpec,
and hilitedMaskRsrcSpec parameters.

SEE ALSO

The Project Settings dialog provides an editor to use for an application’s
part’s icon; see “Application Icon Editor” (page A-3). You must use
MakeExtrasIcons to create icons for other types of parts.

For an example of using this function, see Listing 6-1 (page 6-16).

MakePixFamily 11

MakePixFamily(bwRsrcSpec, maskRsrcSpec, colorSpecs)

Creates pix family from a set of PICTs.

bwRsrcSpec String for the name of a black and white PICT resource
to use in 2.0 and 1.x systems, or nil if backward
compatibility is not desired.

maskRsrcSpec String for the name of a black and white PICT resource
to use as a mask or nil if there is no mask.

colorSpecs A color spec or an array of color specs. A color spec is
either a string for the PICT resource name or a frame
with the following slots:
rsrcSpec Required. A string for the PICT resource

name.
bitDepth Optional. An integer for the bit depth of

the PICT. The following values are
allowed: 1, 2, 4, and 8.
If you do not specify a bit depth for a
particular PICT, the bit depth is
determined automatically from the PICT

A P P E N D I X

Functions A-9
Preliminary Draft.  Apple Computer, Inc. 4/21/97

resource. If you want the image to be
included in your project at a particular bit
depth, you should specify it explicitly.

return value A pix family frame, it can be passed to CopyBits, used in
the icon slot of a clPictureView, or passed to MakeShape
to create a bitmap shape.

DISCUSSION

If colorSpecs contains an array, the system displays the most appropriate
image for the current hardware.

The resource names are for named PICT resources within any resource file
included in the current project. If more than one PICT is used, then all the
PICTs must have the same size bounds, or this function will throw. This
includes all the PICTs referred to in the bwRsrcSpec, maskRsrcSpec, and
colorSpecs parameters.

SEE ALSO

NTK’s picture slot editor provides a simple way to create a pix family. See
“Picture Slot Editor” (page A-1).

UnPackRGB 11

UnPackRGB(packedRGB)

Returns a frame with information about the red, green, and blue components
of a packed RGB integer.

packedRGB A packed RGB integer, as returned by the function
PackRGB.

return value A frame with red, green, and blue slots. Each slot
contains an integer in the range [0, 65535] for that color
component’s value.

SPECIAL CONSIDERATIONS

UnPack(PackRGB(r,g,b)) returns a frame {red: redInt, green:greenInt,
blue: blueInt}. Note that r might not equal redInt, g might not equal

A P P E N D I X

A-10 Functions

Preliminary Draft.  Apple Computer, Inc. 4/21/97

greenInt, and b might not equal blueInt. It is only guaranteed that these
values are similar, not identical.

	Figures, Tables, and Listings
	About This Book
	Change History
	Related Books
	Sample Code
	Conventions Used in This Book
	Special Fonts

	Developer Products and Support

	Newton Works
	About Newton Works
	User Interface
	Figure�1-1 Word processor display

	Programming Interface Overview

	Using the Newton Works Interface
	Registering Stationery
	Creating the DataDef
	Supporting Application-Defined Preferences
	Figure�1-2 Info picker

	Adding Information to the Title Slip
	Figure�1-3 Title slip

	Supporting Newton Find Operations

	Creating the ViewDef
	Supporting Document Find
	Figure�1-4 Find slip

	Supporting Data Storage
	Supporting Scrolling
	Providing Status Bar Buttons
	Figure�1-5 Status bar buttons

	Providing Help
	Notification of Changes

	Working With the Tools Picker
	Figure�1-6 Tools picker

	Newton Works Interface Reference
	Table�1-1 FindChange parameters and actions

	Newton Works Draw Application
	About the Draw Application
	User Interface
	Figure�2-1 The Newton Works Draw application

	Programmer’s Overview

	Using the Drawing Application Interface
	Adding Custom Drawing Tools
	Listing�2-1 Adding a tool to the Draw application’...

	Adding Patterns and Gray Tones to the Fill Tool
	Listing�2-2 Adding to the Draw application’s fill ...

	Adding Stamps to the Stamp Tool
	Listing�2-3 Adding stamps to the Draw application

	Draw Application Methods
	The Canvas and Its Methods

	Draw Application Reference
	The Canvas
	Functions and Methods
	Draw Application viewDef Methods

	Word Processing Views
	About protoTXView And the View System
	Application-defined Methods
	Table�3-1 Use of application-defined methods in pr...

	View Slots
	Table�3-2 Use of standard view system slots in pro...

	Other View Features
	About Paged and Non-paged Word-Processing Views
	Table�3-3 Paged versus non-paged views

	About Scrolling with protoTXView
	Table�3-4 Scrolling methods of protoTXView

	About Storing protoTXView Documents
	Using protoTXViewFinder to Search Documents
	Word-Processing View User Interface
	Figure�3-1 The displayed ruler

	Terminology

	Using Word Processing Views
	Initializing Your Word-Processing View
	Listing�3-1 Initializing a word-processing view
	Setting Up Your Word-Processing View
	Listing�3-2 Setting up a word-processing view

	Scrolling the Word-processing View
	Listing�3-3 The SetScrollers method
	Listing�3-4 The TXWord ViewUpdateScrollersScript m...
	Listing�3-5 The TXWord GetTextHeight method
	Listing�3-6 The TXWord ViewScroll2DScript method

	Reading a Word-Processing Document From a Soup
	Listing�3-7 Reading a document from a soup

	Storing Documents In a Soup
	Listing�3-8 Closing the word-processing view
	Listing�3-9 Storing a word-processing document

	Handling User Interactions
	Figure�3-2 The TXWord button bar
	Changing the Font
	Listing�3-10 Changing the font in TXWord

	Changing the Font Size
	Listing�3-11 Changing the font size in TXWord

	Replacing the Selected Text With a Graphic
	Listing�3-12 Replacing the selcted text

	Converting the Selected Text to Uppercase
	Listing�3-13 Converting the selcted text to upperc...

	Adding a Recognized Word to Your Word-Processing V...
	Listing�3-14 Adding a recognized word to a word-pr...

	Word Processing View Reference
	Initialization Methods
	Methods for Getting Information
	Editing Functions and Methods
	Storage Methods
	Scrolling Methods
	Highlighting Methods
	Ruler Methods
	Page-Handling Methods
	Printing Methods

	Keyboard Enhancements
	About Keyboard Enhancements
	Terminology
	About Keystroke Handling
	Keystroke Event Sequencing
	Key-down Events
	Key-repeat Events
	Key-release Events

	Typing Without a Caret

	About Command Key Handling
	How Command Keys Are Found
	Table�4-1 Command definition views

	About Displaying Command-Key Combinations in Menus...

	About Keyboard Support in Pickers
	Calling a Key-Command Method From a Picker Script
	Listing�4-1 Calling a key-command method from a pi...

	Keyboard Enhancements User Interface
	General Usage
	Text entry and editing
	Slips, windows, and buttons:
	Figure�4-1 The find slip when it is not the key vi...
	Figure�4-2 The Find slip when it is the key view

	Menus
	Figure�4-3 A menu with and without its keyboard eq...
	The Command-key Combination popup Help Slip
	Figure�4-4 Command-key combination slip

	System and Built-in App Command Key Assignments
	Table�4-2 System-level key assignments (continued)...
	Command-key Assignments for the NotePad Applicatio...
	Table�4-3 Notepad checklist and outline stationery...

	Command-Key Assignments for The Names Application
	Table�4-4 Names application command keys

	Command-Key Assignments for The Dates Application
	Table�4-5 Dates application command keys

	Command-Key Assignments for The In/Out Box
	Table�4-6 In/Out box command keys

	Command-Key Assignments for The Call Log
	Table�4-7 Call log command keys

	Command-Key Assignments for the BookPlayer
	Table�4-8 BookPlayer command keys

	Compatibility
	Default Buttons
	Possible Key-view Compatibility Problem

	Using the Keyboard Enhancements
	Keystroke Handling
	Table�4-9 Summary of keystroke-handling methods an...
	Intercepting Keystrokes Directly
	Intercepting Individual Keystrokes
	Intercepting Grouped Keystrokes
	Text Flags and Keyboard Input
	Table�4-10 Text flags to specify the kind of keyst...

	Handling Command Keys
	Table�4-11 Summary of command key methods and func...
	Searching for Key Commands
	Defining Key Commands
	Listing�4-2 A key command array
	Adding the Key-Commands
	Listing�4-3 Defining key-commands in the ViewSetup...

	Invoking the Command-Key Method
	Removing Key-Commands
	Listing�4-4 Removing key-commands

	Displaying the Popup Command Key Help Slip
	The Caret Stack and Caret Activation
	Listing�4-5 An example of a ViewCaretActivateScrip...

	Using Keys in Slips
	Designating the Default Button In a Slip
	Designating a Slip’s Close Box
	Default and Close Buttons in Confirm Slips
	Table�4-12 New default button lists

	Keyboard Reference
	Table�4-13 Key codes for special keys (continued)
	Table�4-14 Key event-processing script flags (cont...

	Spell Checker
	About the Spell Checker
	Limitations

	Using the Spell Checker
	Processing of Words Passed to the Spell Checker
	Use of Dictionaries by the Spell Checker

	Spell Checker Reference

	Drawing and Graphics 2.1
	About Drawing and Graphics in the Newton 2.1 OS
	About Gray Tones and Patterns
	About Gray Pictures
	About Gray Bitmaps (Pix Families)
	Figure�6-1 The effect of a mask for a pix family

	About Gray Extras Drawer Icons
	About Ink Shapes
	About Text Box Shapes
	About Gray Text
	About Selection Handles
	Figure�6-2 An oval shape with selection handles

	About Anti-Aliasing
	Figure�6-3 Four black and white pixels
	Figure�6-4 The anti-aliasing effect on a bitmap th...

	Compatibility

	Using Drawing and Graphics in the Newton 2.1 OS
	Specifying Shades of Gray
	Figure�6-5 The 4-bit grayscale palette
	Specifying RGB Triplets
	Using Patterns, Gray Patterns, and Dithered Patter...
	Black and White Patterns
	Gray Patterns
	Dithered Patterns

	Creating Gray Text
	Importing Color PICTs from the Mac OS Version of N...
	Creating Graphic Shapes from Picture Objects
	Using Pix Families

	Creating Gray Extras Drawer Icons
	Listing�6-1 Code to add an icon and iconPro slot t...

	Anti-Aliasing Monochrome Bitmaps
	Gray Transfer Modes
	Figure�6-6 Two bitmaps combined with the different...
	How the System Scales Bitmaps

	Using Selection Handles
	Creating Ink and TextBox Shapes
	Figure�6-7 A textBox
	Listing�6-2 Function to retrieve ink shapes from a...

	New Graphic Shape Utility Functions
	The FindShape Function
	The GetPointsArrayXY Function
	The MungeShape Function
	Figure�6-8 Overlapping ovals

	The GetMaskedPixel Function

	Changes to Existing Graphic Shape Functions
	MakeBitmap Accepts a Depth Option
	MakeShape Makes Bitmap Shapes With Masks
	GetStrokePointsArray Filters More Points and Swaps...

	Drawing and Graphics Reference
	Table�6-1 Truth table for modeBic
	Pattern
	Gray Pattern
	Dithered Pattern

	Sound
	About Sound
	Terminology
	Compatibility
	Hardware Volume Support
	User Interface
	Figure�7-1 Sound stationery
	Figure�7-2 Sound recorder slip

	Sound Input
	Sound Compression
	Synthesized Sound
	Devices and Channels
	Sampling Rates
	New NTK Sound Import Function

	Using Sound
	Using the protoRecorderView
	Figure�7-3 protoRecorderView

	Using the Built-in Sound Recorder Slip
	Table�7-1 Sound recorder slots you can set

	Using the NewtonScript API to Record Sound
	Listing�7-1 Sound input
	Setting the Input Gain

	Compressing Sound
	Using Codecs to Compress and Decompress Sound

	Synthesizing Sound
	Table�7-2 Sound synthesis types
	Figure�7-4 Tone envelope

	Using Global Sound Preferences
	Getting and Setting Input Gain Preference
	Getting and Setting Default Input or Output Device...

	PlaySound Errata
	Using the Sound Registry

	Sound Reference
	Table�7-3 Sound device constants
	Table�7-4 Codec constants
	Table�7-5 Compression constants
	Table�7-6 Data type constants
	Table�7-7 protoRecorderView state constants
	Table�7-8 Sound interface error codes

	Dial-In Networks
	Dial-in Networks Reference
	Data Structures

	IrDA Communication Tool
	About the IrDA Communication Tool
	Overview
	Terminology

	Using the IrDA Tool
	Making a Connection
	Getting IrDA Tool Information
	Slow IR Connect Option

	IrDA Tool Option Reference
	Table�9-1 Summary of IrDA tool options
	Table�9-2 IrDA discovery option fields
	Table�9-3 IrDA discovery option probe slots consta...
	Table�9-4 IrDA discovery option service hint const...
	Table�9-5 IrDA connection information option field...
	Table�9-6 Disconnect warning event values
	Table�9-7 IrDA tool error codes

	eMate Multi-User Mode
	Using Multi-user Mode
	Reference

	Miscellaneous
	Reference
	View Slot
	Clipboard Data Frame
	Table�11-1 Clipboard data types accepted by the sy...

	Extras Drawer Folder Symbols
	Names Worksite Soup Entry
	Newton Works Word Processor Soup Format
	User Configuration Variables
	Figure�11-1 A view created from protoPasswordSlip
	Figure�11-2 A view based on protoBlindEntryLine

	Screen Orientation Constants
	Figure�11-3 Screen orientation constants

	Serial Communication Tool Sound Option

	Newton Toolkit Enhancements
	Editors
	Picture Slot Editor
	Figure�A-1 NTK’s picture slot editor

	Application Icon Editor
	Figure�A-2 NTK’s Application Icon pane of the Proj...

	Functions

